Register to reply

Circular motion?

by brentwoodbc
Tags: circular, motion
Share this thread:
brentwoodbc
#1
Apr25-09, 02:32 PM
P: 62
1. The problem statement, all variables and given/known data

a test tube rotates in a centrifuge with a period of 1.2x10^-3s. The bottom of the test tube travels in a circular path of radius .15 m. with the centripetal force on a 2.00x10^-8kg amoeba at the bottom of the tube.




3. The attempt at a solution

ac=v^2/r=(4pi^2r)/T
cross multiplied and got.
v^2x(1.2x10^-3)=4pi^2x(1.5^2)
divided
and solved for velocity and I got.
V=27.21



then fc=(m2v^2)/r
fc=(2x10^-8)x(27.210^2)/.15
fc=9.87x10^5????
supposed to be 8.22x10^2


THanks.
Phys.Org News Partner Science news on Phys.org
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100
Doc Al
#2
Apr25-09, 05:31 PM
Mentor
Doc Al's Avatar
P: 41,477
Quote Quote by brentwoodbc View Post
ac=v^2/r=(4pi^2r)/T
cross multiplied and got.
v^2x(1.2x10^-3)=4pi^2x(1.5^2)
divided
and solved for velocity and I got.
V=27.21
Two problems:
(1) That equation is not quite right. The right hand side should be: (4pi^2r)/(T^2)
(2) Why did you solve for V? What you want is v^2/r, which is given directly by the (corrected) right hand side.
MalachiK
#3
Apr25-09, 05:32 PM
MalachiK's Avatar
P: 112
It's not clear what the question is asking.

If you're looking for the force then you could start by finding the linear velocity. Just think distance divided by time and the circumference of the circle that the end of the tube is moving along.

You have a formula for the acceleration in terms of v and r. Compare this to Newton's second law and you should be able to get the accelerating (centripetal) force in terms of v and r as well.

LowlyPion
#4
Apr25-09, 05:36 PM
HW Helper
P: 5,341
Circular motion?

Quote Quote by brentwoodbc View Post
1. The problem statement, all variables and given/known data

a test tube rotates in a centrifuge with a period of 1.2x10^-3s. The bottom of the test tube travels in a circular path of radius .15 m. with the centripetal force on a 2.00x10^-8kg amoeba at the bottom of the tube.

3. The attempt at a solution

ac=v^2/r=(4pi^2r)/T
cross multiplied and got.
v^2x(1.2x10^-3)=4pi^2x(1.5^2)
divided
and solved for velocity and I got.
V=27.21

then fc=(m2v^2)/r
fc=(2x10^-8)x(27.210^2)/.15
fc=9.87x10^5????
supposed to be 8.22x10^2

THanks.
Or more directly for the same result

F = m*ω2*r

where ω = 2π/T

F = m*(2π/T)2*r

Edit: I think the correct answer should have a (-) exponent ?
brentwoodbc
#5
Apr25-09, 05:57 PM
P: 62
Quote Quote by Doc Al View Post
Two problems:
(1) That equation is not quite right. The right hand side should be: (4pi^2r)/(T^2)
(2) Why did you solve for V? What you want is v^2/r, which is given directly by the (corrected) right hand side.
Thanks
You are correct, The T^2 was my mistake. I have the right answer now (8.22 x 10^-2)

I do not understand what you mean by just using the right side?
ac=(4pi^2r)/T
there's no v there.
I solved for v to use the formula fc = (m2v^2)/r
Doc Al
#6
Apr25-09, 06:05 PM
Mentor
Doc Al's Avatar
P: 41,477
Quote Quote by brentwoodbc View Post
Thanks
You are correct, The T^2 was my mistake. I have the right answer now (8.22 x 10^-2)
I didn't check your calculation. Was it just a typo?

I do not understand what you mean by just using the right side?
ac=(4pi^2r)/T
there's no v there.
I solved for v to use the formula fc = (m2v^2)/r
You started with the equation: ac=v^2/r=(4pi^2r)/T^2
What you need (to move to the next step) is v^2/r, which equals (4pi^2r)/T^2. You don't need to know V explicitly:
ac=v^2/r=(4pi^2r)/T^2

thus:
Fc = mac = mv^2/r= m(4pi^2r)/T^2

You could go right to the answer using only r and T, which were given.
brentwoodbc
#7
Apr25-09, 07:31 PM
P: 62
Quote Quote by Doc Al View Post
I didn't check your calculation. Was it just a typo?


You started with the equation: ac=v^2/r=(4pi^2r)/T^2
What you need (to move to the next step) is v^2/r, which equals (4pi^2r)/T^2. You don't need to know V explicitly:
ac=v^2/r=(4pi^2r)/T^2

thus:
Fc = mac = mv^2/r= m(4pi^2r)/T^2

You could go right to the answer using only r and T, which were given.
Oh in the sense f=ma. that makes sense.
Thank you.


Register to reply

Related Discussions
Simple Harmonic Motion- From Uniform Circular Motion Introductory Physics Homework 5
Uniform Circular Motion, Rotational Motion, Torque, and Inertia General Physics 1
Question on relative motion and circular motion. Introductory Physics Homework 6
When to use term Rotational motion and Circular motion? General Physics 2
Motion in a Plane question dealing with circular motion Introductory Physics Homework 11