Vectors Linear Independent


by CSNabeel
Tags: independent, linear, vectors
CSNabeel
CSNabeel is offline
#1
Aug25-09, 11:21 AM
P: 12
1. The problem statement, all variables and given/known data
Considering the following vectors R[tex]^{4}[/tex]:

v1 = (1,2,0,2) v2 = (2,3,1,4) v3 = (0,1,-1,0)

Determine if these vectors are linearly independent. Let S be the linear span of the three vectors. Define a basis and the dimensions of S. Express the vector v=(3,5,1,6) as a linear combination of the three vectors. Can this be achieved in a unique way? Justify your answer?

2. Relevant equations
I tried to put it into matrix form and reduce via row echolon but I'm not if this is the correct or proper way


3. The attempt at a solution

[ 1 2 0 2
2 3 1 4
0 1 -1 0
3 5 1 6]

[ 1 2 0 2
0 -1 1 0
0 1 -1 0
0 0 0 0 ]

x +2y = 2
y - z = 0
-y + 2 = 0
therefore
y=z making it linearly independent
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes
Дьявол
Дьявол is offline
#2
Aug25-09, 11:51 AM
P: 365
You need to prove that p=q=r=0, for v1,v2,v3 to be linear independent:

[tex]pv_1 + qv_2 +rv_3=0[/tex]

[tex]p(1,2,0,2)+q(2,3,1,4)+r(0,1,-1,0)=0[/tex]

You should express the vector v in same manner as linear combination of v1,v2,v3: i.e pv1+qv2+rv3=v

p,q,r are random scalars.

Regards.
CSNabeel
CSNabeel is offline
#3
Aug25-09, 12:02 PM
P: 12
so with that being said which of the two do I follow from below to work out the answer?

a)

1p + 2q = 0
2p +3q +r = 0
q - r = 0
2p + 4q = 0

b)

1p + 2q = 3
2p +3q +r = 5
q - r = 1
2p + 4q = 6

and if I follow b I'm I right to think that p = 1 q =2 and r = 0

Дьявол
Дьявол is offline
#4
Aug25-09, 12:23 PM
P: 365

Vectors Linear Independent


Quote Quote by CSNabeel View Post
so with that being said which of the two do I follow from below to work out the answer?

a)

1p + 2q = 0
2p +3q +r = 0
q - r = 0
2p + 4q = 0

b)

1p + 2q = 3
2p +3q +r = 5
q - r = 1
2p + 4q = 6

and if I follow b I'm I right to think that p = 1 q =2 and r = 0
Ok, your task have two parts,

a) to check the linear independence of the vectors v1,v2 and v3

b)to find out if the vector v can be represented as linear combination of the vectors v1,v2 and v3.

So you need to solve both a) and b).

Regards.
CSNabeel
CSNabeel is offline
#5
Aug25-09, 12:36 PM
P: 12
a)

1p + 2q = 0 (1)
2p +3q +r = 0 (2)
q - r = 0 (3)
2p + 4q = 0 (4)

(3) q = r
(1) p = -2q
put (3)and(1) into (2) 2(-2q) + 3(q) +q = -4q +3q + q = 0

p=-2
q = 1
r = 1

vectors are dependent


b)

1p + 2q = 3 (1)
2p +3q +r = 5 (2)
q - r = 1 (3)
2p + 4q = 6 (4)

(3) q - 1 = r
(3) into (1) 2p + 3q + (q-1) = 5 ; 2p +4q = 6 (same as 4)
(4) can be divide by 2 to equal (1) answer therefore is

p = 1
q = 1
r = 0

so it that then correct?

Thank you by the way your really helpful
Дьявол
Дьявол is offline
#6
Aug25-09, 12:56 PM
P: 365
I am glad that I helped you.

Just a little correction:
a)
r=q
p=-2q
q any number in R, you chose q=1

The vectors are linear dependent

b)
r=q-1
p=3-2q
q any number in R, you chose it q=1

Regards.


Register to reply

Related Discussions
Linear Algebra (Vector spaces, linear independent subsets, transformations) Calculus & Beyond Homework 12
Linearly Independent Vectors Calculus & Beyond Homework 14
Linearly independent vectors Calculus & Beyond Homework 26
Linear Algerba - Finding linearly independent vectors Linear & Abstract Algebra 5
PROOF: Independent vectors and spanning vectors Linear & Abstract Algebra 8