Register to reply

Wind flutter; what is the reduced frequency, K?

by Krampus
Tags: flutter, frequency, reduced, wind
Share this thread:
Oct15-09, 07:44 AM
P: 6

I'm trying to do a 2D-model of a bridge section subjected to wind, i.e. the bridge deck can have angular and vertical displacement due to the wind. I'm having some problem with understanding the theory.

The equations that I use to describe the aerodynamic lift and moment are (sorry for the messy equations...):
Lh = 1/2 * rho * U^2 * B * [K*(H1*)*h_prim/U + K*(H2*)*B*alpha_prim/U + K^2*(H3*)*alpha + K^2*(H4*)*h/B]

M_alpha = 1/2 * rho * U^2 * B * [K*(A1*)*h_prim/U + K*(A2*)*B*alpha_prim/U + K^2*(A3*)*alpha + K^2*(A4*)*h/B]

Where rho is the air density, U is the wind speed, B is the bridge deck width, K is the reduced frequency, Hi* and Ai* are the flutter coefficients, alpha and h are the angular and vertical displacements.

K=omega*B/U. Where U is the wind speed, B is the width of the bridge deck and omega is the circular frequency (omega=2*pi*n, n=frequency of oscillation).

My question is then; what is omega (or n)? Since it is a 2D-model of the bridge it can oscillate in either vertical direction or angular. Is omega connected to these oscillations? And if so, how? One idea that I thought of was to calculate 2 different K (one for h and one for alpha), this would solve my problem, but this approach has not been mentioned in any of the aeroelasticity books I've read...

If anyone can answer my question or have any thoughts around it I would very much appreciate it.

Thank you,
Phys.Org News Partner Science news on
'Office life' of bacteria may be their weak spot
Lunar explorers will walk at higher speeds than thought
Philips introduces BlueTouch, PulseRelief control for pain relief

Register to reply

Related Discussions
Why do flags flutter? General Physics 4
Aeroelastic Flutter Experiment Classical Physics 0
Frequency of Wind-generated electricity General Physics 3
Gust Load Alleviation and Flutter Supression? Mechanical Engineering 0
Why does shower curtain flutter inward? Introductory Physics Homework 1