Derivative of Log Determinant of a Matrix w.r.t a parameter

by CuppoJava
Tags: derivative, determinant, matrix, parameter
 P: 24 Hi, I'm trying to see why the following theorem is true. It concerns the derivative of the log of the determinant of a symmetric matrix. Here's the theorem as stated: For a symmetric matrix A: $$\frac{d}{dx} ln |A| = Tr[A^{-1} \frac{dA}{dx}]$$ Here's what I have so far, I'm almost at the answer, except I can't get rid of the second term at the end: $$A = \sum_{i} \lambda_{i} u_{i} u_{i}^{T}$$ $$A^{-1} = \sum_{i} \frac{1}{\lambda_{i}} u_{i} u_{i}^{T}$$ So $$A^{-1} \frac{dA}{dx} = \sum_{i} \frac{1}{\lambda_{i}} u_{i} u_{i}^{T} \frac{d}{dx}(\sum_{j}\lambda_{j} u_{j} u_{j}^{T}) =\sum_{i}\sum_{j}\frac{1}{\lambda_{i}}\frac{d\lambda_{j}}{dx}u_{i} u_{i}^{T}u_{j} u_{j}^{T} + \sum_{i}\sum_{j}\frac{\lambda_{j}}{\lambda_{i}}u_{i} u_{i}^{T}\frac{d}{dx}u_{j} u_{j}^{T} =\sum_{i}\frac{1}{\lambda_{i}}\frac{d\lambda_{j}}{dx}u_{i} u_{i}^{T} + \sum_{i}\sum_{j}\frac{\lambda_{j}}{\lambda_{i}}u_{i} u_{i}^{T}\frac{d}{dx}u_{j} u_{j}^{T}$$ And this would be just perfect if the second term was equal to zero. But I can't see how that could be made to happen. Thanks a lot for your help -Patrick