Register to reply

A Compound Pendulum's Period

by dgl7
Tags: compound, pendulum, period
Share this thread:
dgl7
#1
Jan12-10, 06:46 PM
P: 8
1. The problem statement, all variables and given/known data

Consider a light rod of negligible mass and length "L" pivoted on a frictionless horizontal bearing at a point "O." Attached to the end of the rod is a mass "m." Also, a second mass "M" of equal size (i.e., m=M) is attached to the rod (0.2L from the lower end). What is the period of this pendulum in the small angle approximation?

2. Relevant equations

T=2pi(I/Hgm)^0.5
where H=the length from the center of mass to the point of rotation
rcm=(r1m+r2M)/(m+M)
Icm=m(L1)^2+M(L2)^2
I=Icm+m(d)^2

3. The attempt at a solution
rcm=(r1m+r2M)/(m+M)
rcm=[(L+0.8L)m)]/2m
rcm=0.9L (from the point of rotation)

Icm=mL^2+mL^2
Icm=m[(0.1L)^2+(-0.1L)^2]
Icm=0.02mL^2

I=Icm+md^2
I=0.02mL^2+m(0.9L)^2
I=0.83mL^2

T=2pi(I/Hgm)^0.5
T=2pi(0.83mL2/0.9Lgm)^0.5
T=2pi(83L/90g)^0.5

I'm really unsure as to what I'm doing wrong so it'd be great if someone could point out what I'm doing wrong--perhaps I've mistaken what one of the variable is supposed to represent? Thanks!

P.S. if it helps, the answer is 2pi(41L/45g)^0.5, I'd just love to know how to get to that.

OK so another update. I just realized I'm one digit off--because the answer is 82/90, not 83/90. I think the error must be with finding the Icm, because everything would simplify properly if Icm=0.01 instead of 0.02. I'm just confused as to why Icm would only be with regards to one mass instead of both...

FIGURED IT OUT:
No parallel axis theorem and now the period equation makes sense because we can put in 2m instead of m-->
Solution:

rcm=(r1m+r2M)/(m+M)
rcm=[(L+0.8L)m)]/2m
rcm=0.9L (from the point of rotation)

Icm=mr^2+mr^2
Icm=m(1L)^2+m(0.8L)^2
Icm=1.64L^2

T=2pi(I/Hgm)^0.5
T=2pi(1.64mL^2/0.9Lg2m)^0.5
T=2pi(82L/90g)^0.5
T=2pi(41L/45g)^0.5
Phys.Org News Partner Science news on Phys.org
Climate change increases risk of crop slowdown in next 20 years
Researcher part of team studying ways to better predict intensity of hurricanes
New molecule puts scientists a step closer to understanding hydrogen storage
ideasrule
#2
Jan12-10, 09:22 PM
HW Helper
ideasrule's Avatar
P: 2,323
Is there a diagram that goes with this? Where's O?
dgl7
#3
Jan16-10, 08:21 AM
P: 8
It is a pendulum, thus O is at the opposite end of the rod.


Register to reply

Related Discussions
Pendulum's Max Speed Introductory Physics Homework 2
Pendulum's Period Introductory Physics Homework 8
Change in Pendulum's Period with temperature. Introductory Physics Homework 2
Pendulum's and special relativity Introductory Physics Homework 1
Tension in a conical pendulum's string Introductory Physics Homework 1