on bohr- sommerfeld theory


by Kennalj
Tags: bohr, sommerfeld, theory
Kennalj
Kennalj is offline
#1
Jan15-10, 10:39 PM
P: 6
So when relativity is applied to an orbiting electron, you get:

[tex]p_{\varphi}=mr^2 \dot{\varphi}, \quad m=\frac{m_{0}}{\sqrt{1-\beta^2}}, \quad \beta=\frac{v}{c} [/tex]

Change the rectangular coodinates into the polar coordinates,

[tex] x = r cos \varphi, \qquad y = r sin \varphi [/tex]

The nucleus is at the origin. The equation of motion is (the Coulomb force condition),

[tex]\frac{d}{dt}m\dot{x}= - \frac{kZe^2}{r^2}cos \varphi, \quad \frac{d}{dt}m\dot{y}= - \frac{kZe^2}{r^2}sin \varphi[/tex]

Using the next condition (the angular momentum [tex]p_{\varphi}[/tex] is the constant),

[tex]\frac{d}{dt}= \frac{d\varphi}{dt} \frac{d}{d\varphi}= \frac{p_{\varphi}}{mr^2} \frac{d}{d\varphi}[/tex]

So the equation of the motion is ([tex]u= 1/r[/tex]),

[tex]\frac{d}{dt}m\dot{x}= - \frac{p_{\varphi}^2}{mr^2}(u+\frac{d^2 u}{d\varphi^2}) cos \varphi[/tex]

In the case of y, change the upper cos into sin. Combine this with the Coulomb force condition,

[tex]\frac{d^2 u}{d \varphi^2}+u = \frac{kZe^2 m_{0}}{p_{\varphi}^2} \frac{1}{\sqrt{1-\beta^2}} [/tex]

Using the energy [tex]W[/tex] (of #4) and erase the [tex]\beta[/tex], the solution can be expressed as,

[tex]u = \frac{1}{r} = C (1+ \epsilon cos \gamma \varphi)[/tex]

And, the condition of the quantization is, (using the partial integration)

[tex]\oint p_{r}dr= p_{\varphi} \epsilon^2 \gamma \oint \frac{sin^2 \varphi d \varphi}{(1+\epsilon cos \varphi)^2} = p_{\varphi} \gamma \oint (\frac{1}{1+\epsilon cos \varphi}-1) d\varphi=n_{r} h[/tex]

And, we should use the following mathematical formula, too,

[tex]\frac{1}{2\pi} \oint \frac{d \varphi}{1+ \epsilon cos \varphi} = \frac{1}{\sqrt{1-\epsilon^2}} [/tex]


my question is, assuming r= radius, how does momentum = mr and furthermore p(lorentz)=mr^2(lorentz)
Phys.Org News Partner Science news on Phys.org
Better thermal-imaging lens from waste sulfur
Hackathon team's GoogolPlex gives Siri extra powers
Bright points in Sun's atmosphere mark patterns deep in its interior

Register to reply

Related Discussions
Lie algebras and Bohr-Sommerfeld conditions General Physics 1
Bohr-Sommerfeld Quantization question General Physics 9
Mathematical Basis of Bohr-Sommerfeld Math & Science Software 1
Mathematical Basis of Bohr-Sommerfeld Math & Science Software 1