# harmonic oscillator

by rayman123
Tags: harmonic oscillator
 P: 152 1. The problem statement, all variables and given/known data Can someone please give me some hints how to solve this problem. Show that expected value for the kinetic energy is the same as the expected value for the potential energy for a harmonic oscillator in gound state. 2. Relevant equations how to start with it? 3. The attempt at a solution 1. The problem statement, all variables and given/known data 2. Relevant equations 3. The attempt at a solution
 PF Patron HW Helper P: 3,440 One way would be to calculate the expectation values and separately and show that they are equal. You know what the ground state wavefunction for the harmonic oscillator is, so you have to do a couple of integrals.
 P: 152 hello! I have been trying to write my calculations by using 'latex' but then i get a problem, it only shows me the very first part of my solutions when i want to add more it does not work at all.....do you know what might be a problem?
PF Patron
HW Helper
P: 3,440

## harmonic oscillator

Sorry, I don't know what could be wrong. Why don't you start slow and write just a couple of simple equations for practice. You may wish to follow the link below to see how latex is used to write multiple equations.

http://www.physicsforums.com/library...item&itemid=58
 P: 152 $$\psi_{0}= (\frac{\alpha}{\pi})^{\frac{1}{4}} e^{\frac{-y^2}{2}}$$ $$y= \sqrt{\frac{m\omega}{\hbar}}x\Rightarrow y=\sqrt{\alpha}x$$ $$\alpha= \frac{m\omega}{\hbar}$$ $$<|x^2|>=\int_{-\infty}^{\infty}dxx^2|{\psi_{0}}^2|=\sqrt{\frac{m\omega}{\pi \hbar}}\int_{-\infty}^{\infty}dxx^2e^{\frac{-m \omega x^2}{\hbar}}=I$$ $$\int_{-\infty}^{\infty}dxx^2e^{-\alpha x^2}=\frac{1}{2\alpha}\sqrt{\frac{\pi}{\alpha}}$$ $$I= \frac{1 \hbar}{2m \omega}$$ for $$<|p^2|>=\frac{m \hbar \omega}{2}$$ $$<|E_{k}| >= \frac{1}{2m}|<|p^2>|= \frac{\hbar \omega}{4}$$ $$<|E_{p}|> = \frac{m\omega^2}{2}<|x^2|>= \frac{\hbar \omega}{4}$$ can i calculate it this way? I have problems with finding formulas for the expected value for kinetic and potential energy....
 PF Patron HW Helper P: 3,440 The <|x2|> expectation value looks correct. How did you do the <|p2/2m|> integral?
 P: 152 $$<|p^2|>=-\hbar^2 \int_{-\infty}^{\infty}dxe^{\frac{-m \omega x^2}{2\hbar}}\frac{\partial ^2}{\partial x^2}e^{\frac{-m \omega x^2}{2\hbar}}\sqrt{\frac{m\omega}{\pi \hbar}}= \hbar m \omega -m^2 \omega^2<|x^2|>=\frac{m \hbar \omega}{2}$$
 PF Patron HW Helper P: 3,440 Methinks you are done.
 P: 152 thank you!:)

 Related Discussions Advanced Physics Homework 1 Advanced Physics Homework 1 Advanced Physics Homework 3 Advanced Physics Homework 1 Quantum Physics 1