Register to reply

Kernel/Range basis

by newtomath
Tags: basis, kernel or range
Share this thread:
newtomath
#1
Apr30-10, 10:40 AM
P: 37
L: R^4 => R^3 is defined by L(x,y,z,w) = (x+y, z+w, x+z)

A) Find a basis for ker L

We can re write L(x,y,z,w) as x* (1,01) + y *(1,0,0) + z*(0,1,1) + w*(0,1,0).
I then reduced it to row echelon form

We now have the equations X-W=0 , Y+W=0, Z+W=0.

There are infinitely many solutions as X=W, Y= -W and Z=-W. So if we set W=1 we have

the basis for the kernel=Vector(1,-1, -1,1)


B) find a basis for range L

Given
L(x,y,z,w) = (x+y, z+w, x+z)

We can re write L(x,y,z,w) as x* (1,01) + y *(1,0,0) + z*(0,1,1) + w*(0,1,0).
S= {(1,01) ,(1,0,0) ,(0,1,1),(0,1,0)} It spans L.

To find the basis for L we set {x* (1,01) + y *(1,0,0) + z*(0,1,1) + w*(0,1,0)} = 0,0,0

I reduced it and the leading one's appear in the first 3 columns of the reduced form, the first 3 vectors in the original matrix became a basis for the range of L
They are:
Vector( {(1, (0, (1})
,
Vector( 1, 0, 0})
,
Vector( 0, 0, 1})

C) verify theorem 10.7 (dim(KerL) + dim(rangeL) = dim V

The dim can be viewed as the # of vectors in of the Ker/range.

Given (dim(KerL) + dim(rangeL) = dim V we have 1+3=4, which is the number of dimensions in the original space (L(x,y,z,w)).
Phys.Org News Partner Science news on Phys.org
'Smart material' chin strap harvests energy from chewing
King Richard III died painfully on battlefield
Capturing ancient Maya sites from both a rat's and a 'bat's eye view'
Mark44
#2
Apr30-10, 01:39 PM
Mentor
P: 21,397
Quote Quote by newtomath View Post
L: R^4 => R^3 is defined by L(x,y,z,w) = (x+y, z+w, x+z)

A) Find a basis for ker L

We can re write L(x,y,z,w) as x* (1,01) + y *(1,0,0) + z*(0,1,1) + w*(0,1,0).
I then reduced it to row echelon form

We now have the equations X-W=0 , Y+W=0, Z+W=0.

There are infinitely many solutions as X=W, Y= -W and Z=-W. So if we set W=1 we have

the basis for the kernel=Vector(1,-1, -1,1)


B) find a basis for range L

Given
L(x,y,z,w) = (x+y, z+w, x+z)

We can re write L(x,y,z,w) as x* (1,01) + y *(1,0,0) + z*(0,1,1) + w*(0,1,0).
S= {(1,01) ,(1,0,0) ,(0,1,1),(0,1,0)} It spans L.

To find the basis for L we set {x* (1,01) + y *(1,0,0) + z*(0,1,1) + w*(0,1,0)} = 0,0,0

I reduced it and the leading one's appear in the first 3 columns of the reduced form, the first 3 vectors in the original matrix became a basis for the range of L
They are:
Vector( {(1, (0, (1})
,
Vector( 1, 0, 0})
,
Vector( 0, 0, 1})

C) verify theorem 10.7 (dim(KerL) + dim(rangeL) = dim V

The dim can be viewed as the # of vectors in of the Ker/range.

Given (dim(KerL) + dim(rangeL) = dim V we have 1+3=4, which is the number of dimensions in the original space (L(x,y,z,w)).
What's your question?
newtomath
#3
Apr30-10, 02:55 PM
P: 37
I forgot to type it. I believe A and B to be correct, but is my explanantion in C suffice?

Mark44
#4
Apr30-10, 03:23 PM
Mentor
P: 21,397
Kernel/Range basis

Sure, it's fine, and the other parts are fine also.


Register to reply

Related Discussions
Kernel, Range, Basis (linear algebra) Linear & Abstract Algebra 6
Basis of the kernel... Linear & Abstract Algebra 3
Finding the kernel and range of a tranformation Calculus & Beyond Homework 11
Kernel basis Linear & Abstract Algebra 6
Kernel and range Introductory Physics Homework 4