Generalizations of certain vectors


by jfy4
Tags: generalizations, vectors
jfy4
jfy4 is offline
#1
Jun30-10, 07:28 PM
jfy4's Avatar
P: 647
Hello,

I have a few questions about generalizing a few 4-vectors into tensors based on physical and intuitive arguments.

The first question I have is if I can form a Stress-Energy-Momentum tensor out of the energy-momentum wave 4-vector [tex]\hbar k_{\alpha}[/tex]?

The formation of the stress-energy tensor in GR came out by associating the energy momentum 4-vector with a 3-volume. What if I preform that same association with the wave 4-vector?

The result I obtain is still of course a stress-energy-momentum tensor when multiplied by [tex]\hbar[/tex], however by it self it is simply just a wave-tensor, with the [tex]k_{0i}[/tex] components representing momentum and energy, but with the [tex]k_{ij}[/tex] components representing the flux of [tex]k[/tex] or the [tex]\frac{dk}{dt}[/tex] across [tex]dA[/tex].

Is this result generally known and unaccepted, or is it physically absurd and hence dismissed?

The second part of my post hinges on the former idea, however I'll still write it for fun.

the wave 4-vector is commonly contracted with the coordinate 4-vector. However, if the wave tensor exists, it will need to be contracted with a coordinate tensor. using dimensional analysis the spatial components of the coordinate tensor [tex]x^{\alpha\beta}[/tex], [tex]x_{ij}[/tex], are 4-volumes, each containing the multiplication of two, 2-surfaces. one, a spatial surface, and the other a temporal surface, with the diagonal elements being a typical 4-volume from GR [tex] v=\int \sqrt{-g}d^{4}x[/tex].

Pending the first part of the post, is this an acceptable generalization of the coordinate 4-vector into a tensor? any help would be appreciated.
Phys.Org News Partner Science news on Phys.org
Internet co-creator Cerf debunks 'myth' that US runs it
Astronomical forensics uncover planetary disks in Hubble archive
Solar-powered two-seat Sunseeker airplane has progress report
jfy4
jfy4 is offline
#2
Jul3-10, 01:09 AM
jfy4's Avatar
P: 647
bump


Register to reply

Related Discussions
Position Vectors, Velocity Vectors, and Acceleration Vectors Introductory Physics Homework 3
PROOF: Independent vectors and spanning vectors Linear & Abstract Algebra 8
Generalizations of the Inv. Function Thm. Calculus 13
Comprehensive polling for generalizations General Discussion 0
Why do we use the words 'us' and 'them', when neither group exists Current Events 10