Register to reply

Isomorphism between Order Ideals and Distributive Lattices

Share this thread:
I<3Gauss
#1
Sep29-10, 10:22 PM
P: 14
The poset on the set of order ideals of a poset p, denoted L(p), is a distributive lattice, and it is pretty clear why this is since the supremum of two order ideals and the infimum of 2 order ideals are just union and intersection respectively, and we know that union and intersection are distributive operations. However, Richard Stanley, in his book Enumerative Combinatorics, states that for any distributive lattice L, there exists a poset P such that L(P) is isomorphic to L. I was wondering what the proof is for this particular statement is since I have been trying to prove this to no avail. I appreciate the responses.
Phys.Org News Partner Science news on Phys.org
World's largest solar boat on Greek prehistoric mission
Google searches hold key to future market crashes
Mineral magic? Common mineral capable of making and breaking bonds
Office_Shredder
#2
Sep29-10, 11:10 PM
Emeritus
Sci Advisor
PF Gold
P: 4,500
At first glance, it seems like it should be isomorphic to its own set of order ideals. I feel like that's too easy of an answer though, and I'm making an assumption that's not true
I<3Gauss
#3
Sep29-10, 11:32 PM
P: 14
That's an interesting idea but however, i also do not have the guts yet or the know how to make such an assumption.

Office_Shredder
#4
Sep29-10, 11:38 PM
Emeritus
Sci Advisor
PF Gold
P: 4,500
Isomorphism between Order Ideals and Distributive Lattices

Think about the map

[tex]x\mapsto I_x[/tex] where [tex]I_x[/tex] is the order ideal of x.
I<3Gauss
#5
Sep30-10, 01:28 AM
P: 14
thanks for the tip, i think i kind of see why this is now. I guess if a poset P was the join irreducible set of some Lattice L, and this particular poset P is isomorphic to the join-irreducibles of L(P), which is the set of all Ix, then L would be isomorphic to L(P)?

The tip that you gave would easily prove that a poset P would be isomorphic to the join-irreducibles of J(P), but I guess what I still dont understand is the following:

How does proving P is the subposet of join-irreducibles of L is isomorphic to the join-irreducibles of L(P) help us in proving that L is indeed isomorphic to L(P)?


Register to reply

Related Discussions
How to prove that a group of order prime number is cyclic without using isomorphism? Linear & Abstract Algebra 1
Order isomorphism f:R->R Set Theory, Logic, Probability, Statistics 2
Order of groups in relation to the First Isomorphism Theorem. Linear & Abstract Algebra 2
Order isomorphism Set Theory, Logic, Probability, Statistics 9
The distributive law Linear & Abstract Algebra 9