puzzle statements


by bob j
Tags: logic, puzzle, statement
bob j
bob j is offline
#1
Nov29-10, 07:05 AM
P: 22
on a sheet of paper, you have 100 statements written down. the first says, "at most 0 of these 100 statements are true." the second says, "at most 1 of these 100 statements are true." ... the nth says, "at most (n-1) of these 100 statements are true. ... the 100th says, "at most 99 of these statements are true." how many of the statements are true?

is it 99 statements?
Phys.Org News Partner Science news on Phys.org
NASA's space station Robonaut finally getting legs
Free the seed: OSSI nurtures growing plants without patent barriers
Going nuts? Turkey looks to pistachios to heat new eco-city
micromass
micromass is online now
#2
Nov29-10, 07:46 AM
Mentor
micromass's Avatar
P: 16,623
I think 50 statements are true...
bob j
bob j is offline
#3
Nov29-10, 07:48 AM
P: 22
I dont see that

SW VandeCarr
SW VandeCarr is offline
#4
Nov29-10, 01:36 PM
P: 2,490

puzzle statements


Quote Quote by bob j View Post
on a sheet of paper, you have 100 statements written down. the first says, "at most 0 of these 100 statements are true." the second says, "at most 1 of these 100 statements are true." ... the nth says, "at most (n-1) of these 100 statements are true. ... the 100th says, "at most 99 of these statements are true." how many of the statements are true?

is it 99 statements?
These are self-referencing statements which creates a conceptual problem for me, but the statement "at most 99 of these (preceding ) statements are true", given the "at most" qualifier, makes the 100th statement true, but vacuous. I'm thinking the first statement must be true under any circumstances since it's not preceded by any statements.
JCVD
JCVD is offline
#5
Nov29-10, 06:49 PM
P: 73
If n statements are true, then "at most k statements are true" would be false for k<n and true for k between n and 99 inclusive. Thus we must have n=99-(n-1) which yields n=50.
micromass
micromass is online now
#6
Nov29-10, 06:57 PM
Mentor
micromass's Avatar
P: 16,623
It would be instructive to look at the case with 4 statements.

So
A: at most 0 statements are true
B: at most 1 statement is true
C: at most 2 statements are true
D: at most 3 statements are true

There are a few cases to consider:
1) All the statements are false
Then A would be true. So not all statements are false, which is a contradiction

2) Exactly one statement is true
Then A and B would be true. This is a contradiction

3) Exactly two statements are true
A and B would be false. C and D would be true. So no contradiction here.

4) Exactly three statements are true
Then only D would be true. So there are no three statements true. Contradiction!

5) Exactly four statements are true
Then all statements would be false. This is a contradiction.



So the correct answer here is that exactly two statements are true: C and D.
An analogous method would show you that, in your problem, exactly 50 statements are true (namely the last 50).


Register to reply

Related Discussions
D=11 and almost predictive statements. Beyond the Standard Model 9
Four contestants and three statements puzzle Brain Teasers 1
Does anyone agree with these statements? General Discussion 4
T/F Proposition Statements Precalculus Mathematics Homework 3
Goto statements Programming & Computer Science 25