Register to reply

A countable basis vs. countably locally finite problem

by radou
Tags: countable basis
Share this thread:
radou
#1
Dec28-10, 10:18 AM
HW Helper
radou's Avatar
P: 3,224
1. The problem statement, all variables and given/known data

Sometimes it's fairly difficult to name a thread for a specific problem.

So, one needs to show that, if X has a countable basis, a collection A of subsets of X is countably locally finite of and only if it is countable.

(A collection A is countably locally finite if it can be expressed as A = U Ai, where is goes over the positive integers, and where for each i, the collection Ai is locally finite.)

3. The attempt at a solution

<==

Assume A is a countable collection of subsets of X, so it can be indexed with the positive integers, so we have A1, A2, ... Ai, ... . Now, let pick some x in X. Trivially, X is a neighborhood of x which intersects Ai, for any i, and hence only finitely many members of the collection Ai (Ai is the only member of Ai). So, A is countably locally finite.

==>

Let A be a countably locally finite collection of subsets of X. Pick x in X, and some element Ai from the collection A (Ai is a collection of sets itself). Then there exists some neighborhood U of x which intersects Ai in only finitely many elements. Let B be a countable basis for X. Pick an element Bi containing x and contained in U. Then Bi intersects Ai in only finitely many elements too (possibly even in none of them, but that meany finitely, too). Do this for every x in X. Now here's probably a wrong conclusion: if I do this for every x, I can't arrive at a countable collection of basis elements {Bi} which cover X, right? Since X may be uncountable. Since if this was true, then {Bi} would be an open cover for X, and every element of {Bi} would intersect Ai in a finite number of elements. Hence, Ai would be countable, which would make A countable.

But I fear this won't work. Since if X is uncountable, I can't choose, for every x in X, the a basis element containing x and contained in the neighborhood Ux of x which intersects Ai in finitely many elements. Or?
Phys.Org News Partner Science news on Phys.org
Security CTO to detail Android Fake ID flaw at Black Hat
Huge waves measured for first time in Arctic Ocean
Mysterious molecules in space
micromass
#2
Dec28-10, 01:18 PM
Mentor
micromass's Avatar
P: 18,040
Well, I think you've proven it, but you don't realize it yet...
For every x, you can choose a set Bi. Now, the resulting collection of Bi is countable (even if X is uncountable). This is since the entire basis B is countable. So the collection of all the Bi must be countable...
radou
#3
Dec28-10, 01:20 PM
HW Helper
radou's Avatar
P: 3,224
Quote Quote by micromass View Post
Well, I think you've proven it, but you don't realize it yet...
For every x, you can choose a set Bi. Now, the resulting collection of Bi is countable (even if X is uncountable). This is since the entire basis B is countable. So the collection of all the Bi must be countable...
Well, then this works after all! Great!

For some reason, I thought something wasn't right here... But indeed, since B is countable, we arrive at a countable collection at the end.


Register to reply

Related Discussions
The Ground Effect , Pressure Waves and surfing pelicans Classical Physics 6
Difference between Identical , Equal , Equivalent Calculus & Beyond Homework 9