Register to reply 
Signals and Systems: Determine if the signal is periodic or nonperiodic(discrete) 
Share this thread: 
#1
Jan211, 01:38 AM

P: 18

1. The problem statement, all variables and given/known data
Determine whether or not each of the following signals is periodic if signal is periodic determine the fundamental period (note that these are discrete not continuous signals) Show your solutions 1. [tex] x(n) = \cos^3(\frac{\pi(n)}{8})[/tex] 2. [tex]x(n) = \cos(\frac{n}{2})\cos(\frac{\pi(n)}{4})[/tex] 2. Relevant equations a. [tex] f = \frac{\omega}{2\pi}[/tex] when f is irrational it is non periodic when f is rational it is periodic b. determining the fundamental period requires the least common multiple of all periods 3. The attempt at a solution 1. [tex]= \cos(\frac{n\pi}{8})\cos^2(\frac{n\pi}{8})[/tex] [tex]= \cos(\frac{n\pi}{8})(1+\cos(\frac{2n\pi}{8}))[/tex] [tex]= \cos(\frac{n\pi}{8}) + \cos(\frac{n\pi}{8})\cos(\frac{2n\pi}{8})[/tex] [tex]= \cos(\frac{n\pi}{8} + \frac{1}{2}(\cos(\frac{n\pi}{8}\frac{n\pi}{4}) + \frac{1}{2}(\cos(\frac{n\pi}{8}+\frac{n\pi}{4})[/tex] [tex]= \cos(\frac{n\pi}{8} + \frac{1}{2}(\cos(\frac{n\pi}{8})) + \frac{1}{2}(\cos(\frac{3n\pi}{8}))[/tex] the first cosine: [tex] f = \frac{\omega}{2\pi} = \frac{\frac{\pi}{8}}{2\pi} = \frac{1}{16} [/tex]  rational  periodic 2nd cosine [tex] f = \frac{\omega}{2\pi} = \frac{\frac{\pi}{8}}{2\pi} = \frac{1}{16} [/tex]  rational periodic 3rd cosine [tex]f = \frac{\omega}{2\pi} = \frac{\frac{3\pi}{8}}{2\pi}} = \frac{3}{16} [/tex]rational???  is this periodic??? now how do i get the least common multiple to get the number of samples the period has since the third cosine is 3/16? the only problem is i need to find the Least common multiple of the three to find the total number of samples in the period or N = 1/f N1 = 16, N2 = 16 , N3 = 16/3 k/m=N1/N2 = 16 / (16/3) = 3/1; mN1 = kN2; 1(16) = 3(16/3) ==>> is the total number of sample equal to No = 16 which is the least common multiple of N1, N2 and N3? Number 2. [tex] x(n) = \cos(\frac{n}{2})\cos(\frac{\pi(n)}{4})[/tex] [tex]x(n) = \frac{1}{2} (cos(\frac{n}{2}  \frac{\pi(n)}{4}) + cos(\frac{n}{2}  \frac{\pi(n)}{4}) )[/tex] [tex] f1 = \frac{\omega}{2\pi} = \frac{\frac{2\pi}{4}}{2\pi}[/tex]<<<< irrational number [tex] f2 = \frac{\omega}{2\pi} = \frac{\frac{2+\pi}{4}}{2\pi}[/tex]<<<< irrational number hence it's not periodic Reference books DSP by proakis Schaum's Outline in signals and systems 


#2
Jan211, 06:39 AM

Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,345

For number 1, you don't really need to do all that work. [itex]a^3= b^3[/itex] if a= b so as long as [itex]cos(n\pi/8)[/itex] is periodic, [itex]cos^3(n\pi/8)[/itex] is also. The period of [itex]cos^3(n\pi/8)[/itex] is the same as the period of [itex]cos(n\pi/8)[/itex].
Number 2 is correct. 


#3
Jan211, 08:01 AM

P: 18

Am i not gonna simplify the trigonometric identity in number 1?
because i have another similar problem given in the book: x[n] = [tex]\cos^2(\frac{n\pi}{8})[/tex] and the sol'n is 


Register to reply 
Related Discussions  
Signals and Systems: Determine if the signal is periodic or nonperiodic  Engineering, Comp Sci, & Technology Homework  9  
Signals & Systems  NonPeriodic wave  Engineering, Comp Sci, & Technology Homework  15  
Signals & Systems  Signal  Engineering, Comp Sci, & Technology Homework  4  
How to determine if a time domain signal is periodic or not?  General Math  0  
Are two signals that make up a periodic signal necessarily periodic?  Precalculus Mathematics Homework  2 