Nonexistence of the universal set.


by Mamooie312
Tags: nonexistence, universal
Mamooie312
Mamooie312 is offline
#1
Jan24-11, 03:50 PM
P: 10
Yo. Wsup.

I watched a video about three years ago where this guy suppossedly provedthe nonexistence of the universal set. I can't find it now but what he said (rather quickly) was that from Cantor, every set is a subset. Therefore, there is no universal set.

1) Is this valid?
2) RW Implications? Is the Universe then, really a universe?

BTW I'm only about to complete engineering math so dont be too complex.

Thanks,
Mamooie
Phys.Org News Partner Science news on Phys.org
Internet co-creator Cerf debunks 'myth' that US runs it
Astronomical forensics uncover planetary disks in Hubble archive
Solar-powered two-seat Sunseeker airplane has progress report
disregardthat
disregardthat is offline
#2
Jan24-11, 04:26 PM
Sci Advisor
P: 1,707
There are no set of all sets within ZFC (the commonly used and acknowledged axioms for ordinary mathematics). The reason for this is that the existence of a universal set leads to contradiction. It would by the axiom of separation (an axiom of ZFC that essentially says that you can form new set from a former one by specifying the properties of the elements you pick) lead to the well-known Russell's paradox. Alternatively, as you mentioned, the universal set must contain itself (or else it does not contain all sets), and that violates the axiom of regularity, but this is not nearly as enlightening.

These are technical difficulties due to our choice of axioms, we simply cannot speak of the set of all sets in ZFC. We do however frequently refer to the class of all sets (and classes of other things). Classes are objects which naturally does not have all the properties sets have, but in return you can define a class merely by specifying the properties of its elements. Proper classes are classes of sets that do not form sets themselves, and of course the universal class is such class. Classes are not formalized in ZFC.

Note that this has nothing to do with the physical universe, sets (and classes) are purely mathematical constructions.


Register to reply

Related Discussions
What is space, vaccuum, or nonexistence? General Discussion 79
universal states Quantum Physics 1
Proof for nonexistence of a prime counting function? Linear & Abstract Algebra 21
Universal Regeneration General Astronomy 5
Universal religion General Discussion 60