Register to reply

Asymptotic behavior of coefficients

by intervoxel
Tags: asymptotic, behavior, coefficients
Share this thread:
intervoxel
#1
Feb3-11, 07:06 AM
P: 135
Given the difference equation

[tex]
a_{n+2}+A_n(\lambda)a_{n+1}+B_n(\lambda)a_n=0
[/tex]

where

[tex]
A_n(\lambda)=-\frac{(n+1)(2\delta+\epsilon+3(n+\gamma))+Q}{s(n+2)(n+1+\gamma)}
[/tex]

and

[tex]
B_n(\lambda)=\frac{(n+\alpha)(n+\beta)}{2(n+2)(n+1+\gamma)}
[/tex]

The asymptotic behavior of the coefficients is given by

[tex]
a_n^{(1)}\sim 2^{-n}n^{-1-\lambda/2}\sum_{s=0}^{\infty}\frac{c_s^{(1)}}{n^s}
[/tex]

and

[tex]
a_n^{(2)}\sim n^{-3}\sum_{s=0}^{\infty}\frac{c_s^{(2)}}{n^s}
[/tex]


I have to do the a similar calculation in my research project but I couldn't find out the procedure used. Please, someone can show me the steps to such a solution?

I tried to helplessly follow the text by Saber Elaydi, An Introduction to Difference Equations.
Phys.Org News Partner Science news on Phys.org
Wildfires and other burns play bigger role in climate change, professor finds
SR Labs research to expose BadUSB next week in Vegas
New study advances 'DNA revolution,' tells butterflies' evolutionary history

Register to reply

Related Discussions
Asymptotic Behavior of Solutions to Linear Equations Differential Equations 0
Asymptotic behavior of coefficients Differential Equations 2
Asymptotic behavior quadrupole potential Advanced Physics Homework 2
Asymptotic behavior and derivatives Calculus 1
Asymptotic homework help Calculus 0