Register to reply

Relativity vs Newtonian Physics

by General_Relativity19
Tags: newtonian, physics, relativity
Share this thread:
General_Relativity19
#1
Oct11-04, 02:54 PM
P: 6
I read in a book that relativity and newtonian physics dont work with each other or something like that. Like when Einstein founded Relativity, Newtonian physics were partialy disregarded because newtonian physics didn't account for relativity. Can Newtonian physics be like converted to work with relativity?
Phys.Org News Partner Science news on Phys.org
Apple to unveil 'iWatch' on September 9
NASA deep-space rocket, SLS, to launch in 2018
Study examines 13,000-year-old nanodiamonds from multiple locations across three continents
Chronos
#2
Oct11-04, 03:23 PM
Sci Advisor
PF Gold
Chronos's Avatar
P: 9,445
Newtonian gravity was never wrong, just incomplete. Physicists already knew that before GR came along. GR basically just adds a correction to compensate for relative motion. But, then again, no one is claiming that GR is the final solution either. Most physicist think the chances are good that GR is just another stop along the way toward an even more complete theory [hopefully one that will allow it to coexist with Quantum Theory].
geometer
#3
Oct11-04, 06:51 PM
P: 196
Quote Quote by General_Relativity19
I read in a book that relativity and newtonian physics dont work with each other or something like that. Like when Einstein founded Relativity, Newtonian physics were partialy disregarded because newtonian physics didn't account for relativity. Can Newtonian physics be like converted to work with relativity?
With the exception of gravity, which Newton considered a force and General Relativity considers an artifact of space-time curvature, Newtonian physics can be considered as the low velocity, low gravity end of Relativity.

turbo
#4
Oct11-04, 07:30 PM
PF Gold
turbo's Avatar
P: 7,363
Relativity vs Newtonian Physics

Quote Quote by Chronos
Newtonian gravity was never wrong, just incomplete. Physicists already knew that before GR came along. GR basically just adds a correction to compensate for relative motion. But, then again, no one is claiming that GR is the final solution either. Most physicist think the chances are good that GR is just another stop along the way toward an even more complete theory [hopefully one that will allow it to coexist with Quantum Theory].
Too true! One thing sorely lacking in GR is a mechanism for gravity and inertia. Mediating particles like gravitons and Higgs bosons have been postulated, making the model more cumbersome and speculative.

Interestingly, the virtual pairs of the ZPE EM field might be able to fill the bill without invoking any further entities. The virtual particles of the ZPE EM field have been experimentally proven to exist. If a mechanism can be modeled that either densifies or polarizes the ZPE EM field in the presence of mass, lots of GR's problems can be solved simultaneously. These include anomalous galaxy rotation curves, excess cluster lensing, and excess cluster gravitational binding. "Answers" that raise lots of new violations are bound to be wrong. Answers that address several deficiencies in the standard cosmology at one time are more likely to be right.
MiGUi
#5
Oct12-04, 06:17 AM
P: 183
Newton laws were according to the low speed world, and when relativity was developed, a condition was that making [tex]v \rightarrow 0[/tex] and Planck's constant [tex]h \rightarrow 0[/tex], then the expressions may be reduced to the classical case observed.
Mike2
#6
Oct12-04, 09:01 AM
P: 1,308
Quote Quote by turbo-1
If a mechanism can be modeled that either densifies or polarizes the ZPE EM field in the presence of mass, lots of GR's problems can be solved simultaneously. These include anomalous galaxy rotation curves, excess cluster lensing, and excess cluster gravitational binding.
I've wonder if particle are extended vibrating objects, then wouldn't their spacial properties and frequence be effected by strong gravitational fields? For example, the frequence would be slower near massive objects wouldn't it?
Mike2
#7
Oct12-04, 09:15 PM
P: 1,308
Quote Quote by Mike2
I've wonder if particle are extended vibrating objects, then wouldn't their spacial properties and frequence be effected by strong gravitational fields? For example, the frequence would be slower near massive objects wouldn't it?
However, these frequency and spatial distortion would have the same effect on all particles interacting at a particular stop. It would not be as if a distorted particle were interacting with non-distorted particles. All particle would be equally distorted at the point of interaction. So the interaction would not be affected by the distorting effects of gravity. I suppose the only exception would be if the gravity were so great that it gave tidal effects on the scale of a string. This would seem to prove that particle interactions are unaffected by gravitational fields, or should I say by the background metric. Does this sound right? Thanks.


Register to reply

Related Discussions
General Relativity vs Newtonian Mechanics Special & General Relativity 5
Newtonian Physics as a curved spacetime General Physics 0
Newtonian Physics Problems Introductory Physics Homework 5