Register to reply

Complex Analysis Question

by tylerc1991
Tags: analysis, complex
Share this thread:
Feb12-11, 03:53 PM
P: 166
1. The problem statement, all variables and given/known data

(a) Use the polar form of the Cauchy-Riemann equations to show that:

g(z) = ln(r) + i(theta); r > 0 and 0 < (theta) < 2pi

is analytic in the given region and find its derivative.

(b) then show that the composite function G(z) = g(z^2 + 1) is analytic in the quadrant x > 0 and y > 0 and find its derivative.

3. The attempt at a solution

Ive done part (a) and got the correct answer, but I am having some trouble with (b). The main question I have is, how do I write this composite function? I can write:
z^2 + 1 as r^2(cos(2(theta)) + 1) + ir^2(sin(2(theta))) but I dont know if that helps me.
Thank you for your help!
Phys.Org News Partner Science news on
Scientists discover RNA modifications in some unexpected places
Scientists discover tropical tree microbiome in Panama
'Squid skin' metamaterials project yields vivid color display
Feb12-11, 08:30 PM
P: 1
I think we should be a little more careful with our labels,

say we have a complex number [tex]z = re^{i\theta}[/tex], then [tex]z^2 = r^2e^{i2\theta}[/tex], but [tex]z^2 + 1 = \zeta[/tex] will be a new complex number we are examining with a different radius [tex]R[/tex] and phase [tex]\phi[/tex], we can begin with a form [tex]\zeta = u(x,y) + iv(x,y)[/tex], but the form of [tex]g(z)[/tex] is in terms of polar quantities, so it would probably be best to go back to a form [tex]\zeta = Re^{i\phi}[/tex] so you may directly insert those expressions for [tex]R[/tex], [tex]\phi[/tex] directly into [tex]g(z) \rightarrow g(\zeta ) = g(\R,\phi )[/tex] for [tex]r[/tex] and "[tex]\theta[/tex].

Note that the new parameters [tex]R = R(r)[/tex] and [tex]\phi = \phi (r,\theta )[/tex]. This approach should work I think, where the proof may be furnished by recalling the results for part (a) which proves the analyticity of [tex]z[/tex] itself (i.e. [tex]r[/tex] and [tex]\theta[/tex] ). I have not thought it through that much, but it sounds ok to me so far.
Feb12-11, 08:35 PM
P: 166
What I ended up doing was using the result from part (a), in which I found the derivative of g(z) = 1/z. This implies that the derivative of g(z^2 + 1) = 2z/(z^2 +1)

Register to reply

Related Discussions
Complex analysis question Calculus & Beyond Homework 1
Complex analysis question! Calculus & Beyond Homework 3
Complex analysis question Calculus 8
Complex Analysis question Calculus & Beyond Homework 5
Complex Analysis question Calculus & Beyond Homework 8