Register to reply

Maxwell speed distribution

by Je m'appelle
Tags: distribution, maxwell, speed
Share this thread:
Je m'appelle
#1
Apr22-11, 10:23 AM
P: 109
1. The problem statement, all variables and given/known data
Show that the number [tex]N(0,v)[/tex], of molecules of an ideal gas with speeds between 0 and v is given by

[tex]N(0,v) = N \left[ erf(\xi) - \frac{2}{\sqrt{\pi}} \xi e^{-\xi^2} \right][/tex]

Where,

[tex]erf(\xi) = \frac{2}{\sqrt{\pi}} \int_{0}^{\xi} e^{-x^2} dx [/tex]

And,

[tex]\xi^2 = \left(\frac{mv^2}{2kT} \right)[/tex]

2. Relevant equations

[tex]\frac{dN_v}{N} = \sqrt{\frac{2}{\pi}} \left( \frac{m}{kT}\right)^{\frac{3}{2}} v^2 e^{\frac{-mv^2}{2kT}} \ dv [/tex]

3. The attempt at a solution

Alright, so I managed to get to the following

[tex]\frac{dN_v}{N} = \frac{4}{\sqrt{\pi}} x^2 e^{-x^2} dx [/tex]

Where,

[tex]\alpha = \frac{m}{2kT}, \ x = \sqrt{\alpha}v [/tex]

=========================\\===========================

So far so good, but now when checking the solution on the textbook it claims the following algebraic manipulation which I can't follow

[tex]\frac{2N}{\sqrt{\pi}}\int_{0}^{\xi} x (2xe^{-x^2} dx) = \frac{2N}{\sqrt{\pi}} x e^{-x^2} |_{\xi}^{0} \ + \ N \frac{2}{\sqrt{\pi}} \int_{0}^{\xi} e^{-x^2} dx [/tex]

What was done on the integral above, how can you "split" it like that?
Phys.Org News Partner Science news on Phys.org
Study links polar vortex chills to melting sea ice
Lab unveil new nano-sized synthetic scaffolding technique
Cool calculations for cold atoms: New theory of universal three-body encounters
L-x
#2
Apr22-11, 10:49 AM
P: 61
Integration by parts
Dick
#3
Apr22-11, 11:00 AM
Sci Advisor
HW Helper
Thanks
P: 25,228
It's integration by parts. udv=d(uv)-vdu with u=x and dv=(2x)e^(-x^2)dx.

Je m'appelle
#4
Apr22-11, 11:10 AM
P: 109
Maxwell speed distribution

Quote Quote by L-x View Post
Integration by parts
But of course! Agh, how didn't I see that, I feel very stupid right now.

Thanks for the highlight, L-x!
L-x
#5
Apr22-11, 11:15 AM
P: 61
No worries. It's not immidiately obvious, although the integral is written in a way which gives you a clue: x(2x) instead of 2x^2
Dick
#6
Apr22-11, 11:29 AM
Sci Advisor
HW Helper
Thanks
P: 25,228
Don't double post, Je m'appelle.

http://www.physicsforums.com/showthread.php?t=492505


Register to reply

Related Discussions
The Maxwell Speed Distribution in 2D Advanced Physics Homework 2
Maxwell's Speed Distribution Introductory Physics Homework 8
Maxwell's speed distribution law Advanced Physics Homework 4
Energy distribution and Maxwell speed distribution Advanced Physics Homework 5