## Pythagorean Triples

Prove that every Pythagorean triple is of the form 3k, 4k, 5k. Could I say that 3k = x = 2st, 4k = y = t^2-s^2, and 5k = z = t^2 + s^2? those are the definitions of the pythagorean triple correct? can anyone say yea or nay? if nay, how can i make it correct?
 PhysOrg.com science news on PhysOrg.com >> Leading 3-D printer firms to merge in $403M deal (Update)>> LA to give every student an iPad;$30M order>> CIA faulted for choosing Amazon over IBM on cloud contract

Recognitions:
Homework Help
 Quote by 1+1=1 Prove that every Pythagorean triple is of the form 3k, 4k, 5k.
You might want to check the exact wording of the problem, 5, 12, 13 is a Pythagorean triple that's not of the form you give.
 the wording is correct.

Recognitions:
Homework Help

## Pythagorean Triples

He/she didn't say that k was necessarily an integer....

The general form of pythagorean triples is well known, try googling for them and I@m sure you'll find a nice proof.

What you wrote certainly isn't true as the counter example shows. One counter example disproves it, so how are you going to amend your question?

Where did the question appear?

Recognitions:
Gold Member
 Quote by 1+1=1 Prove that every Pythagorean triple is of the form 3k, 4k, 5k. Could I say that 3k = x = 2st, 4k = y = t^2-s^2, and 5k = z = t^2 + s^2? those are the definitions of the pythagorean triple correct? can anyone say yea or nay? if nay, how can i make it correct?
You have the general form of the triples correctly stated, but they are not of the form 3k, 4k, 5k, consider

$$12^2+5^2=13^2, or 20^2+ 21^2 =29^2.$$

How could you argue about that? Is 29 a multiple of 5, is 13?

Recognitions:
Gold Member