Register to reply 
Nonuniform inertiaby LASmith
Tags: non uniform inertia 
Share this thread: 
#1
Jul611, 05:45 AM

P: 21

1. The problem statement, all variables and given/known data
A cylinder with radius R and mass M has density that increases linearly with radial distance r from the cylinder axis, ie. [itex]\rho[/itex]=[itex]\rho[/itex][itex]_{0}[/itex](r/R), where [itex]\rho[/itex][itex]_{0}[/itex] is a positive constant. Show that the moment of inertia of this cylinder about a longitudinal axis through the centre is given by I=(3MR[itex]^{3}[/itex])/5 2. Relevant equations I=[itex]\int[/itex]r[itex]^{2}[/itex].dm volume = 2[itex]\pi[/itex]rL.dr 3. The attempt at a solution I=[itex]\int[/itex]r[itex]^{2}[/itex][itex]\rho[/itex].dv =[itex]\int[/itex](r[itex]^{3}[/itex][itex]\rho[/itex][itex]_{0}[/itex]/R.)dv =[itex]\int[/itex](r[itex]^{3}[/itex][itex]\rho[/itex][itex]_{0}[/itex]/R.)(2[itex]\pi[/itex]rL).dr integrate between 0 and R to obtain 2[itex]\rho_{0}[/itex][itex]\pi[/itex]R[itex]^{4}[/itex]L/5 However, I do not understand how to express this without using the term [itex]\rho_{0}[/itex] 


#3
Jul611, 08:09 AM

P: 21




Register to reply 
Related Discussions  
Moment of Inertia  Non uniform density  Introductory Physics Homework  1  
Moment of inertia of thin rod with nonuniform mass  Introductory Physics Homework  7  
Moment of inertia of a uniform solid sphere  Introductory Physics Homework  7  
Inertia of a uniform rod  Classical Physics  4 