## math PROJECTS for elementary students

Hi,

I am looking for some math projects or ideas to my students in the elementary level: Grades 4 and 5.

they're using the harcourt text book. But i want some nice, new and maybe weird ideas such that they can do it with me or by their own. I need to put these math projects in the school's exhibition, and their parents will see their work. (It could be a math project using the thick boards (cork or foam boards).

Any ideas or cool websites PLEASE!!!

thanks,
maths

 Some ideas (they're common ones though) 1. geometric properties of figures demonstrated using models 2. geometry in real life...figures, structures, constructions 3. properties of numbers 4. somethings with geoboards, etc... You could google this... Cheers vivek
 I remember seeing a book at the library full of math projects, can't remember what it's called though sorry. Take a look at your library though you might find something. The fibonacci sequence is always interesting, the golden ratio. or maybe looking at the Fleet Scheduling Programme ? (Set partitioning, matrix representation, combinatorial optimisation). Prime numbers? (Sieve of eratosthenes?) Non-euclidian geometry? What age are people in grades 4 and 5 ? (please forgive me I'm an ignorant kiwi ). Good luck! I wish my maths teachers gave out more projects/assignments :( no fun anymore!

Blog Entries: 13
Recognitions:
Gold Member
Staff Emeritus

## math PROJECTS for elementary students

I hope this is not too simple but I used to be fascinated with calculating areas as a kid. I had a necklace, and I remember putting it onto my desk and rearranging it into different shapes - a triangle, square, rectangle, and finally a circle, playing with the calculations as to what would give me the maximum area.

 Recognitions: Homework Help Science Advisor You could ask how many regular tilings of the plane there are, lots of experimenting to piece things together with cutouts. Or how many platonic solids are there. There should be lots of visual problems to play around with in graph theory, bridges of Konigsberg, colouring problems (4-colours in a plane and variants). You should be able to do some fun work with $$\pi$$. Have them approximate it using buffon's needle problem, or maybe by approximating the area of a circles using rectangles. The needle problem might be fun, getting your entire class gather data would be interesting. Explaining to the parents that their kids are throwing sticks in the air during math class would be an experience too.
 Recognitions: Gold Member Homework Help Count all the floor tiles in the school. :) Kidding. Golden Ratio is a good one, along with the Fibonnaci Sequence. Although prime numbers, might be hard to understand if they don't know anything about dividing. If they do, well then that's good. If they started solving variables using two or three equations, show them the basic properties of matrices. It's the exact same thing. Finding your own pi value. Using the method Archmedes used.
 Blog Entries: 13 Recognitions: Gold Member Science Advisor Staff Emeritus I remember an extra credit assignment we once had to explain Bhaskara's proof of the Pythagorean theorem. It was similar to what is posted on this web site: http://www.math.ntnu.no/~hanche/pythagoras/ I thought that was kinda neat-o!

Recognitions:
Gold Member
Staff Emeritus
 Quote by Math Is Hard I remember an extra credit assignment we once had to explain Bhaskara's proof of the Pythagorean theorem. It was similar to what is posted on this web site: http://www.math.ntnu.no/~hanche/pythagoras/ I thought that was kinda neat-o!
Explanation : thathaasthu (which is Sanskrit for "behold", or more commonly "so shall it be").

Well, that's all the explanation that bhaskara gave ! <shrug>

 Recognitions: Gold Member Science Advisor Staff Emeritus Some suggestions : 1 . Showing why circles, ellipses, parabolas are called "conic sections" - by actually making cones and cutting them in different ways 2. Demonstrate, by making right triangles out of square pieces, that (3,4,5), (5,12,13), etc are Pythgorean triples. 3. Use a length of string to measure the circumference of different circular discs, and divide these lengths by the measured radii of the discs. 4. Demonstrate, using examples, that the k'th differences are equal, for a sequence where t(n) = an^k 5. Demonstrate that the definition of an ellipse as being the locus of a point whose sum of distances from two fixed points in constant - using a board with a sheet of paper, two push-pins, a length of string, and a pencil. 6. Do one of the many puzzles where an object drawn on paper with squares is cut up and rearranged to give a new object of seemingly different area. Show where the "cheating" happens in this - using large shapes and a good ruler. 7. Demonstrate the short cut for squaring a number ending in 5. 8. Demonstrate the divisibility tests (especially nice for 9 and 11) 9. Demonstrate the 4-color problem, and show by allowing attempts, how 3 colors fail. 10. Show by allowing attempts, that there's no solution on the plane to the Bridges of Konigsberg problem. Show that a solution exists on a torus. 11. Show the quick way to determine whether a point is inside or outside a many-sided convex polygon - by counting the number of intersections of a curve drawn from the point to the ouside. 12. Magic squares - demonstrate that the common short cut for filling these works. Many of these may seem like hard problems, and rigorous proofs would indeed be beyond the scope of Grade 4/5, but simply working with examples or doing demos are fun, and easily learnt
 this is crazy. these kids are in grade ! golden ratio, Pi, matrices! I didn't learn what Pi was until grade 7. and until last week in my grade 12 geometry class I though a matrix was just a really cool movie. I think a lot of these examples are just pointless to someone who doesn't have a thorough enough background in different math concepts. I thinks finding areas of simple shapes is about as far as I got in grade 5. ON a ligher note. I remember a trick to learning the 9x table from way back. You hold out both your hands and what even number you want to multiply 9 by you put down that finger and count on both sides. eg lllll lllll these are my two hands 9x6 is... lllll xllll 5 4 there are 5 fingers on the left and 4 on the right. and gokul, what is the short cut for squaring #'s that end in a 5?
 Recognitions: Homework Help Science Advisor Simple optimization (linear programming) is accessible to 4th and 5th graders and has obvious applications. Think, for example, a bakery with two products. Indirect measurements of heigts and distances using proportions is pretty good - for example putting mirrors on the ground and then measuring distance from mirror to object and mirror to eye to get the height of the target. This makes for nice diagrams. Measuring distances precisely using vernier scales. This one is a bit tricky and involves fractions, but is also quite neat. Since this is an election year - why it's impossible to have a fair election. Pick's theorem. Fractals - not sure if you can even get to fractal dimension, but they make for some nifty drawings. Probability distributions - try to find examples of flat, curve, and other probability distributions. Scattering diagrams (crystalography) - find the shape of hidden shapes by bouncing things off of them.

Recognitions:
Gold Member
Staff Emeritus
 Quote by Physics is Phun and gokul, what is the short cut for squaring #'s that end in a 5?
(N5)^2 = XY25 where XY = N(N+1)

Ex : 35^2 = 1225 since 34 = 12, 85^2 = 7225, 125^2 = 15625

Proof :
(10N + 5)^2 = (10N)^2 + (2*10N*5) + 5^2 = 100N^2 + 100N + 25 = 100N(N+1) + 25

 how about that problem with the 2 jugs, where one can hold, say, 9 litres & the other can hold 4, and you've got to get 6 litres somehow by pouring water from one jug to the other. there's a lot more stuff in coxeter/ball's "mathematical recreations and essays", check it out
 Blog Entries: 13 Recognitions: Gold Member Science Advisor Staff Emeritus Moebius strips are fun.
 what about - Russian Multiplication (Halving and doubling) - Gelosia Multiplication - What is infinity - Modular Arithmetic (ISBN numbers, Leap years, Time) - History of numbers - Guessing stuff... probabilities. tree diagrams - Counting square -> estimating area? - economy in wrapping (aluminimum & chocolate squares? mMmMmm) - density - brachistochrone? u can show with ping pong balls that the curve of a brachistochrone - a cycloid-shaped path - is the fatest route from one point down a slope to a lower one, even though the curve is longer than a straight path to teh same point. - planning pathways/building mazes with marbles. show corresponding logical "machine" flow chart diagram. - fractals/chaos theory/snowflakes etc..