Register to reply

Spectral Method for optimization

by brydustin
Tags: method, optimization, spectral
Share this thread:
brydustin
#1
Aug22-11, 05:42 PM
P: 209
trying to find a global min/max while avoiding saddle points ..... If we expand a polynomial of several dimensions we get the following:

f(x + del x) = f(x) + del x * g + .5 (del x) H (del x)^t + O(||x||^3) : g is the gradient, H is the Hessian.

then we can take the eigenvectors of H and make them into a matrix U s.t. UU^t = I, and use the eigenvalues to construct a diagonal matrix, D; so that H = UDU^t.

then define: z = (del x ) * U
and define d = (U^t)* g

so that our original equation reduces to
f(x+del x ) = f(x) + z*d +.5*z*D*z^t + O(||x||^3) ; equivalently,
f(x+del x ) ~ f(x) + z*d +.5*z*D*z^t

(got all of this from: http://linneus20.ethz.ch:8080/3_7.html)

Just curious how we are supposed to update the iterations? I get to the step where if the method finds a saddle point it avoids the saddle point by going in the opposite direction for the given dimension and then scaling by a factor, h , such that the original function f(x+del x ) is optimized as best as possible.... in other words, after the N-dimension problem is put through this method, we find all the "saddle point dimensions" and reduce the problem to 1-dimension and solve for h. But i get a little confused from the websites examples, as the numbers don't work out in some of the problems, and also i'm not completely clear how the update works in this method. Finally, what's the best method to solve for h? A sub-routine of 1-D Newton's Method? Golden Search? Bisection? etc.....
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker

Register to reply

Related Discussions
The best method for a many many variable optimization problem? General Engineering 1
Newton's Optimization Method Differential Geometry 2
Spectral method related General Math 1
Numerical Optimization ( steepest descent method) Calculus & Beyond Homework 0
Pseudospectral method vs spectral method Quantum Physics 2