Register to reply

Roots of a Polynomial

by dbr
Tags: polynomial, roots
Share this thread:
dbr
#1
Sep28-11, 08:48 PM
P: 1
1. The problem statement, all variables and given/known data

Let [itex]z^n + \sum_{k=0}^{n-1}a_kz^k[/itex] be a polynomial with real coefficients [itex]a_k\in[0,1][/itex]. If [itex]z_0[/itex] is a root, prove that [itex]Re(z_0) < 0[/itex] or [itex]|z_0| < \frac{1+\sqrt{5}}{2}[/itex].

2. Relevant equations



3. The attempt at a solution

I have attempted to solve this problem by contradiction (i.e. assuming there is a root [itex]z_0[/itex] with [itex]Re(z_0) \geq 0[/itex] and [itex]|z_0| \geq \frac{1+\sqrt{5}}{2}[/itex]). I then tried to look for a contradiction in the equations [itex]Re(z_0^n + \sum_{k=0}^{n-1}a_kz_0^k) = 0[/itex] and [itex]Im(z_0^n + \sum_{k=0}^{n-1}a_kz_0^k) = 0[/itex]. Unfortunately, I'm not able to find any contradiction.
Phys.Org News Partner Science news on Phys.org
Bees able to spot which flowers offer best rewards before landing
Classic Lewis Carroll character inspires new ecological model
When cooperation counts: Researchers find sperm benefit from grouping together in mice

Register to reply

Related Discussions
Help! Getting the roots of a polynomial Calculus & Beyond Homework 13
Polynomial roots Precalculus Mathematics Homework 7
Roots of polynomial General Math 12
Roots of Polynomial Calculus & Beyond Homework 6
Roots of a polynomial Introductory Physics Homework 6