Register to reply

Weird FEM issue (nat freqs)

by jeffziggy
Tags: freqs, issue, weird
Share this thread:
jeffziggy
#1
Nov8-11, 01:56 AM
P: 3
Hello,

I recently used Matlab to find the natural frequencies of a clamped-clamped beam. It was fairly simple, as I construct the global mass and stiffness matrices. Then it's just a matter of using the eig() function. (For sake of simplicity I put beam properties all to 1.)

When I choose how many elements (lets call it N) to use, it seems to give me natural frequencies which, seem to be smaller than usual. I somehow stumbled upon the fact that these frequencies are the literature values I have divided by N^2.

Anyone got any ideas as why this is so? Here is my code. Thanks!! Edit: For example when N = 10, my first natural frequency is 0.2237 when the exact value is 22.37.

Jeff

syms y;
syms z;
area = 1;
L = 1;
p = 1;
E = 1;
Ig = 1;
n = 10; %number of elements
if n == 0
stop
end
size = 4+((n-1)*2);
%define global matrices
Mg = zeros(size);
Kg = zeros(size);
%beam function
A = [1 0 0 0 ; 0 1 0 0 ; 1 L L^2 L^3 ; 0 1 2*L 3*L^2];
Ainv = inv(A);
Aitrans = transpose(Ainv);
Yh = [1 ; y ; y^2 ; y^3];
Ya = [1 ; y];
Ydotdot = diff(diff(Yh));


%Solving for Mass matrix (kinetic energy)
prod1 = Yh*transpose(Yh);
M = p*area*Aitrans*int(prod1, y, 0, L)*Ainv;
%solving for stiffness matrix (potential energy)
K = (E*Ig)*Aitrans*int(Ydotdot*transpose(Ydotdot), y, 0, L)*Ainv;

%creating the global mass matrix
Mg(1:4, 1:4) = M(1:4, 1:4);
Kg(1:4, 1:4) = K(1:4, 1:4);

if n > 1
i = 1;
j = 1;
    for i=1:n-1
    Mg(j+2:j+5, j+2:j+5) = Mg(j+2:j+5, j+2:j+5) + M(1:4, 1:4);
    Kg(j+2:j+5, j+2:j+5) = Kg(j+2:j+5, j+2:j+5) + K(1:4, 1:4);
    j = j+2;
    end
   
end

%delete rows/columns based on clamped ends (boundary conditions)

Mg(size,:) = [];
Mg(size-1,:) = [];
Mg(:,size) = [];
Mg(:,size-1) = [];
Mg(:,1) = [];
Mg(:,1) = [];
Mg(1,:) = [];
Mg(1,:) = [];


Kg(size,:) = [];
Kg(size-1,:) = [];
Kg(:,size) = [];
Kg(:,size-1) = [];
Kg(:,1) = [];
Kg(:,1) = [];
Kg(1,:) = [];
Kg(1,:) = [];


eigs = eig(Kg,Mg);
sqrt(eigs)
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
AlephZero
#2
Nov8-11, 07:23 AM
Engineering
Sci Advisor
HW Helper
Thanks
P: 7,172
I haven't checked every line of the code, but I think you have each element of length 1, so the length of your beam depends on the number of elements in the model.

If the length of the beam is [itex]l[/itex], the global mass is proportional to [itex]l[/itex] and the global stiffness proportional to [itex]1/l^3[/itex], so the frequences would be proportional to [itex]\sqrt{k/m} = 1/l^2[/itex].
jeffziggy
#3
Nov8-11, 10:20 AM
P: 3
Quote Quote by AlephZero View Post
I haven't checked every line of the code, but I think you have each element of length 1, so the length of your beam depends on the number of elements in the model.

If the length of the beam is [itex]l[/itex], the global mass is proportional to [itex]l[/itex] and the global stiffness proportional to [itex]1/l^3[/itex], so the frequences would be proportional to [itex]\sqrt{k/m} = 1/l^2[/itex].
That was exactly it! Thank you kind sir!

Jeff


Register to reply

Related Discussions
Weird issue with professor (undergrad research) Academic Guidance 7
CDF Issue Set Theory, Logic, Probability, Statistics 2
Weird Issue with the Chain Rule Calculus & Beyond Homework 5
Zero issue Calculus & Beyond Homework 9
Issue with MIH Forum Feedback & Announcements 14