Register to reply

Sum of a finite exponential series

by ElfenKiller
Tags: exponential, finite, series
Share this thread:
ElfenKiller
#1
Nov10-11, 07:19 AM
P: 9
1. The problem statement, all variables and given/known data

Given is [itex]\sum_{n=-N}^{N}e^{-j \omega n} = e^{-j\omega N} \frac{1-e^{-j \omega (2N+1)}}{1 - e^{-j\omega}}[/itex]. I do not see how you can rewrite it like that.

2. Relevant equations

Sum of a finite geometric series: [itex]\sum_{n=0}^{N}r^n=\frac{1-r^{N+1}}{1-r}[/itex]

3. The attempt at a solution

Or is the above result based on this more general equation: [itex]\sum_{n=0}^{N}ar^n=a\frac{1-r^{N+1}}{1-r}[/itex]? Although I think the equation in (2) is just this equation for a=1, right?

So, I know how to get to the 2nd term in (1), i.e., [itex]\frac{1-e^{-j \omega (2N+1)}}{1 - e^{-j\omega}}[/itex], but I have no idea why it is multiplied by the term [itex]e^{-j\omega N}[/itex].
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
danago
#2
Nov10-11, 07:42 AM
PF Gold
P: 1,125
Did you notice that the sum you are trying to compute actually starts from n=-N and not n=0? I think you can get the answer you want by making a change of variable and then using the geometric series equation you have identified.
ElfenKiller
#3
Nov10-11, 07:52 AM
P: 9
Quote Quote by danago View Post
Did you notice that the sum you are trying to compute actually starts from n=-N and not n=0? I think you can get the answer you want by making a change of variable and then using the geometric series equation have identified.
Yes, I've noticed that it starts there. That's why I thought it can be rewritten as [itex]\frac{1−e^{-j\omega(2N+1)}}{1−e^{−jω}}[/itex], but the solution states that this fraction is multiplied by [itex]e^{−jωN}[/itex].

danago
#4
Nov10-11, 08:09 AM
PF Gold
P: 1,125
Sum of a finite exponential series

Are you sure that the exponential term in front of the fraction does have a negative sign? I just tried doing the working and ended up with a positive sign, i.e.:

[tex]\sum^{N}_{n=-N} e^{-j\omega n} = e^{j\omega N} \frac{1-e^{-j\omega(2N+1)}}{1-e^{-j\omega}}[/tex]

I did it by making the substitution [itex]\phi=n+N[/itex]. I will check my working again.

EDIT: I have checked over my working and have convinced myself that the negative should not be there. It is late here so i could easily have made a mistake though
ElfenKiller
#5
Nov10-11, 08:23 AM
P: 9
Quote Quote by danago View Post
Are you sure that the exponential term in front of the fraction does have a negative sign? I just tried doing the working and ended up with a positive sign, i.e.:

[tex]\sum^{N}_{n=-N} e^{-j\omega n} = e^{j\omega N} \frac{1-e^{-j\omega(2N+1)}}{1-e^{-j\omega}}[/tex]

I did it by making the substitution [itex]\phi=n+N[/itex]. I will check my working again.

EDIT: I have checked over my working and have convinced myself that the negative should not be there. It is late here so i could easily have made a mistake though
Okay, thank you. For me, it is not about the sign in the exponent. I do not see why we have to multiply by the term in front of the fraction. But I think I rewrote the equation in the wrong way. Can you give me your steps?
danago
#6
Nov10-11, 08:29 AM
PF Gold
P: 1,125
You have transformed the upper and lower limits of the sum, however you have not applied the same transformation to the variable n in the summand.

If [itex]\phi=n+N[/itex], then the new limits of the sum will be [itex]\phi=0[/itex] and [itex]\phi=2N[/itex]. You must then also replace the 'n' in the summand with [itex]n=\phi-N[/itex]. If you do this then you will get the right answer.

EDIT:
The transformed sum will be:

[tex]\sum^{2N}_{\phi=0} e^{-j\omega (\phi-N)} = e^{j\omega N} \frac{1-e^{-j\omega(2N+1)}}{1-e^{-j\omega}}[/tex]
danago
#7
Nov10-11, 08:38 AM
PF Gold
P: 1,125
Maybe it will be easier to understand if we look at why what you did isn't quite correct.

[tex]\sum^{N}_{n=-N} e^{n} = e^{-N}+e^{-N+1}+...+1+e^1+...+e^{N-1}+e^N[/tex]

[tex]\sum^{2N}_{n=0} e^{n} = 1+e^{1}+...+e^{2N-1}+e^{2N}[/tex]

See how they are not the same?
ElfenKiller
#8
Nov10-11, 08:51 AM
P: 9
Ah, I see the problem now. Thanks!
danago
#9
Nov10-11, 09:05 AM
PF Gold
P: 1,125
Quote Quote by ElfenKiller View Post
Ah, I see the problem now. Thanks!
No problem!


Register to reply

Related Discussions
About the exponential function of series... Differential Equations 1
Finite series within finite series ... Calculus & Beyond Homework 0
Finite series HELP PLEASE! Calculus & Beyond Homework 10
Exponential series Calculus 4