Register to reply

Vector fields and integral curves

by meteorologist1
Tags: curves, fields, integral, vector
Share this thread:
meteorologist1
#1
Jan10-05, 07:06 PM
P: 101
I'm studying about vector fields and integral curves in the space R^n.

I need some help in proving or getting some comments/feedback on the following propositions:

1) Find a proof or counterexample: Let K and K' be two vector fields on R^n such that every integral curve of K is also an integral curve of K'. Then K = K'.

2) State and prove a theorem to the effect that integral curves of a vector field can never cross.

3) Let K be a vector field, and [tex] \alpha [/tex] a positive function on R^n. Express the integral curves of the vector field [tex] \alpha K [/tex] in terms of those of K. And why did we require that [tex] \alpha [/tex] be positive?

Thanks in advance.
Phys.Org News Partner Mathematics news on Phys.org
'Moral victories' might spare you from losing again
Fair cake cutting gets its own algorithm
Effort to model Facebook yields key to famous math problem (and a prize)

Register to reply

Related Discussions
Vector Fields and Vector Bundles Differential Geometry 7
Line integral and vector fields Calculus & Beyond Homework 2
Space Curves -> Unit Tangent Vector and Curvature Calculus 2
Vector Fields Calculus 3
2 curves in an integral Introductory Physics Homework 1