## Linear independance and span (Definition)

Would I be correct in saying that:

If Span(S)≠0 then S is linearly independant.
If Span(S)=0 then S is linearly dependant.

With S being a subset of V.
 PhysOrg.com science news on PhysOrg.com >> King Richard III found in 'untidy lozenge-shaped grave'>> Google Drive sports new view and scan enhancements>> Researcher admits mistakes in stem cell study
 No. Span describes the set of all vectors in V that are linear combinations of vectors in S, it is entirely separate from linear independence. Linear independence means (there are various equivalent definitions) the following... If the vectors s1, s2, ... sn are linearly independent, then the equality a1s1 + a2s2 + ... + ansn = 0 has only the trivial solution a1 = a2 = ... = an = 0 (where a1, a2,... an are scalars). Equivalently, none of the vectors can be expressed as a linear combination of the others. Take, for example, the vectors [1 0 0], [0 1 0], and [0 0 1] in R3. These vectors are linearly independent, and yet they span all of R3 (the term for such a set of vectors is a basis for the space R3).
 Mentor Suppose e.g. that S is a subset of ##\mathbb R^2## that contains two points on the same line through the origin. For example, ##S=\{(0,1),(0,2)\}##. Then S is linearly dependent, and span S is that line, so span S is neither ∅ nor {0}. (I don't know which of those you meant by "0").