Register to reply

How to know if a system is dissipative?

by dominicfhk
Tags: dissipative
Share this thread:
dominicfhk
#1
Jul12-12, 01:58 AM
P: 11
Hi guys. I got stuck in this problem and I am wondering anyone can help.

1. The problem statement, all variables and given/known data
For the the linear system describe by d^2/dt^2 y(t) + (5)d/dt y(t) + (6)y(t) = f(t),
where f(t) is the input to the linear system, and the solution to the differential equation is the response of the system. Determine if the system is dissipative.

2. Relevant equations
None I guess.

3. The attempt at a solution
I solve for the 2nd order differential equation by looking for the roots of its characteristic equation, y^2+5y+6=0, and got (y+2)(y+3)=0, so the roots are -2 and -3 and the general solution to the differential equation is y(t)=-2(C1)e^-2t-3(C2)e^-3t, and this express is defined as the response of the linear system, according to the problem statement. Then I am not sure how to proceed.

I assume a dissipative system means that the input is always bigger than the output? How am I suppose to compare "-2(C1)e^-2t-3(C2)e^-3t" against "d^2/dt^2 y(t) + (5)d/dt y(t) + (6)y(t)"? I can't find any similar example online. Any input will be appreciated!

Edit:
Or do I take the limit of -2(C1)e^-2t-3(C2)e^-3t as t approaches infinity? Then I will get zero so I say the system is dissipative? Thanks!
Phys.Org News Partner Science news on Phys.org
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100
rude man
#2
Jul15-12, 04:12 PM
HW Helper
Thanks
PF Gold
rude man's Avatar
P: 4,856
Quote Quote by dominicfhk View Post
Hi guys. I got stuck in this problem and I am wondering anyone can help.

Or do I take the limit of -2(C1)e^-2t-3(C2)e^-3t as t approaches infinity? Then I will get zero so I say the system is dissipative? Thanks!
Yeah, that's the one.


Register to reply

Related Discussions
Hamiltonian for a Dissipative System/ Liouville's Theorem Advanced Physics Homework 1
The theory of discribing fermion dissipative system! Quantum Physics 0
2-form and dissipative systems Classical Physics 39
Dissipative Function of Air Drag Classical Physics 0
Dissipative vs. conservative General Physics 1