Register to reply

Angular momentum and conservation of angular momentum problem

by mx2ko
Tags: angular, conservation, momentum
Share this thread:
mx2ko
#1
Oct30-12, 05:45 PM
P: 7
A small 0.531-kg object moves on a frictionless horizontal table in a circular path of radius 0.85 m. The angular speed is 6.30 rad/s. The object is attached to a string of negligible mass that passes through a small hole in the table at the center of the circle. Someone under the table begins to pull the string downward to make the circle smaller. If the string will tolerate a tension of no more than 105 N, what is the radius of the smallest possible circle on which the object can move?



conservation of angular momentum
angular momentum = moment of inertia x angular velocity
moment of inertia = mass x radius squared
torque = force x lever arm
torque = moment of inertia x angular acceleration
maybe more equations I'm not sure.



I tried to use the conservation of linear momentum equation since you can find the momentum of the object when it is going around in the outer circle. I don't know what to do with the force or how to work it into the equation to solve for r of the little circle.
Phys.Org News Partner Science news on Phys.org
Scientists discover RNA modifications in some unexpected places
Scientists discover tropical tree microbiome in Panama
'Squid skin' metamaterials project yields vivid color display

Register to reply

Related Discussions
Conservation of Angular Momentum Problem Introductory Physics Homework 2
Conservation of Angular Momentum Problem Introductory Physics Homework 8
Angular Momentum Conservation Problem Introductory Physics Homework 4
Conservation of angular momentum problem Introductory Physics Homework 2
Conservation of Angular Momentum Problem Introductory Physics Homework 7