# Math with conditions

by Jhenrique
Tags: conditions, math
 P: 686 Given $$x = \left\{\begin{matrix} y \;\;\; case\;A\\ z \;\;\; case\;B\\ \end{matrix}\right.$$ So, operate x means to operate the 2 cases of right side? For example: $$\int x\;dx = \left\{\begin{matrix} \int y\;dx \;\;\; case\;A\\ \int z\;dx \;\;\; case\;B\\ \end{matrix}\right.$$ Correct?
 P: 1,302 Sure.
 P: 686 I don't known that it's operable. It's cool, will be very important to me in engineering!
 Newcomer P: 341 Math with conditions Could you give a concrete example?
P: 615
 Quote by Jhenrique Given $$x = \left\{\begin{matrix} y \;\;\; case\;A\\ z \;\;\; case\;B\\ \end{matrix}\right.$$ So, operate x means to operate the 2 cases of right side? For example: $$\int x\;dx = \left\{\begin{matrix} \int y\;dx \;\;\; case\;A\\ \int z\;dx \;\;\; case\;B\\ \end{matrix}\right.$$ Correct?
Are you intending for the ##x## in your ##\mathrm{d}x## to be different?
 P: 686 x, y and z are only a representative symbol...
P: 772
 Quote by Jhenrique x, y and z are only a representative symbol...
The problem is that you're using x in two different places, and it's not clear whether or not you intend them to mean the same thing.
P: 560
 Quote by Jhenrique Given $$x = \left\{\begin{matrix} y \;\;\; case\;A\\ z \;\;\; case\;B\\ \end{matrix}\right.$$ So, operate x means to operate the 2 cases of right side? For example: $$\int x\;dx = \left\{\begin{matrix} \int y\;dx \;\;\; case\;A\\ \int z\;dx \;\;\; case\;B\\ \end{matrix}\right.$$ Correct?

$$x = \left\{\begin{matrix} y \;\;\; case\;A\\ z \;\;\; case\;B\\ \end{matrix}\right.$$

$$\int x\;dx = \left\{\begin{matrix} \int y\;dy \;\;\; case\;A\\ \int z\;dz\;\;\; case\;B\\ \end{matrix}\right.$$

Is this what you mean?
P: 686
 Quote by Student100 $$x = \left\{\begin{matrix} y \;\;\; case\;A\\ z \;\;\; case\;B\\ \end{matrix}\right.$$ $$\int x\;dx = \left\{\begin{matrix} \int y\;dy \;\;\; case\;A\\ \int z\;dz\;\;\; case\;B\\ \end{matrix}\right.$$ Is this what you mean?
 Quote by Jhenrique operate x means to operate the 2 cases of right side?
I'm trying find... I think that it's math isn't correct, because:
$$H(x) = \left\{\begin{matrix} 0\;\;\; x<0\\ 1\;\;\; x=0\\ 1\;\;\; x>0\\ \end{matrix}\right.$$
$$\frac{\mathrm{d} }{\mathrm{d} x}H(x) = \left\{\begin{matrix} \frac{\mathrm{d} }{\mathrm{d} x}0\;\;\; x<0\\ \frac{\mathrm{d} }{\mathrm{d} x}1\;\;\; x=0\\ \frac{\mathrm{d} }{\mathrm{d} x}1\;\;\; x>0\\ \end{matrix}\right. = \left\{\begin{matrix} 0\;\;\; x<0\\ 0\;\;\; x=0\\ 0\;\;\; x>0\\ \end{matrix}\right.$$

is wrong, 'cause contradicts the identity d/dx H(x) = δ(x). So, this "technic" above is not useful, although it seems make sense, theoretically... In other words, I'm trying know how do to integrate and derivative, graphically and algebraically, a function with steps and impulses.

 Related Discussions Calculus & Beyond Homework 1 Mechanical Engineering 6 Introductory Physics Homework 24 Calculus & Beyond Homework 2 Differential Equations 9