On divergence

by metroplex021
Tags: divergance, divergence
 P: 110 Hi folks -- could anyone think of a justification of the idea that if a function's arguments diverge (i.e. are taken to infinity), there's a high probability that the function too will diverge? This would be really helpful for thinking about fundamental theories in particle physics, so any help much appreciated!
 P: 202 Not about "high probability", but if your function is nice enough, complex analysis could be of use. Liouville's theorem at least tells you that non-constant differentiable functions $\mathbb C \to \mathbb C$ are unbounded. I'd guess there's some related machinery that would help more.
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,706
 Quote by metroplex021 Hi folks -- could anyone think of a justification of the idea that if a function's arguments diverge (i.e. are taken to infinity), there's a high probability that the function too will diverge? This would be really helpful for thinking about fundamental theories in particle physics, so any help much appreciated!
That statement will make sense if you have some way of "measuring" sets of functions so that you can talk about "probability" in relation to sets of functions.

Mentor
P: 10,511

On divergence

 Quote by economicsnerd Not about "high probability", but if your function is nice enough, complex analysis could be of use. Liouville's theorem at least tells you that non-constant differentiable functions $\mathbb C \to \mathbb C$ are unbounded. I'd guess there's some related machinery that would help more.
Unbounded, but they don't have to go to infinity. sin(z) for z on the real axis is an example of a function that stays bounded for an argument that goes to infinity.

I agree with HallsofIvy, without some way to define a probability this does not work.
 This would be really helpful for thinking about fundamental theories in particle physics
Why?

 Related Discussions Calculus & Beyond Homework 4 Quantum Physics 2 Calculus 3 Calculus 8 Introductory Physics Homework 1