Empty Set and Vector Space

by HungryChemist
Tags: space, vector
 P: 144 While reading text, I had a question which I can not resolve by myself. Please Help me! it reads, The empty set( a vector space with no elements) is denoted as & (This symbol doesn't matter for the sake of argument, I don't know how to write the Zero with a line in the middle). I can understand what they mean by empty set. It must be somewhat like this; Set V = { }. But can such set with no elements has all the quality of being a vector space? If so, how can one show it does indeed meets all the ten axioms of vector space?
 Sci Advisor HW Helper PF Gold P: 562 It seems to me that a vector space ought to contain vectors, so the empty set probably doesn't qualify.
 Sci Advisor HW Helper P: 9,398 The thing with maths is that the empty set can be a FOO since there are no elements of the empty set for whcih the definitions of FOO are false. BUt, that said, I don't think this case is one of them, there is for instance no additive identity. Which text is this?
P: 60

Empty Set and Vector Space

Hm
Since the empty set is a subset of every set, I think one can still say it's a vector space.
The statement $$x\in\emptyset$$ is always wrong, so you can derive any statment you wish, in this case the axioms for vector spaces, which will apply to the empty vector space. (In fact, everything can follow from a wrong statement)
 Sci Advisor HW Helper P: 2,004 Vector spaces need a zero vector (an additive identity) just like groups need an identity element. So empty sets cannot be vector spaces.
 Sci Advisor HW Helper P: 9,398 Of course, almost every time I define these things for students I declare the underlying set to be not empty and that removes any doubt.
 P: 60 OK, I looked it up. The definition presupposes that a subspace of a vector space be non-empty. But does a vector space deserve to be called a set then?
 Sci Advisor HW Helper P: 9,398 of course it does.
P: 144
 Quote by matt grime The thing with maths is that the empty set can be a FOO since there are no elements of the empty set for whcih the definitions of FOO are false. BUt, that said, I don't think this case is one of them, there is for instance no additive identity. Which text is this?

This is yet published text which my professor uses for my classes. This class is Mathematical Methods/Numerical Analysis.
P: 144
 Quote by symplectic_manifold Hm Since the empty set is a subset of every set, I think one can still say it's a vector space.
Empty set is a subset of every set can't be true. If a set S is a subset of a set V then there should be at least one element of set S that also belongs to a set V but there are no such element if the set S is empty. No?
 Sci Advisor HW Helper P: 9,398 I'm afraid the empty set is a subset of any set, at least in any (model of a) set theory worth its salt.
P: 60
 Quote by HungryChemist Empty set is a subset of every set can't be true. If a set S is a subset of a set V then there should be at least one element of set S that also belongs to a set S but there are no such element if the set S is empty. No?
Well, this is it.
The empty set is a subset of every set exactly because of the fact, that one doesn't need to verify, that every element of the empty set also belongs to a non-empty set.
If we have a property which no elements of a non-empty set have, we obtain the empty subset of this non-empty set:
$\emptyset=\{x\in{M}|x\neq{x}\}$

...but as I eventually made clear for myself, it has nothing to do with a vector space...nothing can be defined on an empty set...from nothing comes nothing!
P: 144
 Quote by symplectic_manifold Well, this is it. The empty set is a subset of every set exactly because of the fact, that one doesn't need to verify, that every element of the empty set also belongs to a non-empty set. If we have a property which no elements of a non-empty set have, we obtain the empty subset of this non-empty set: $\emptyset=\{x\in{M}|x\neq{x}\}$ ...but as I eventually made clear for myself, it has nothing to do with a vector space...nothing can be defined on an empty set...from nothing comes nothing!
shoudn't it be $\emptyset=\{x\in{M}|x\neq{y}\}$?

x not equal x sounds very wrong.....
 Sci Advisor HW Helper P: 2,004 No, it's correct. $x \not= x$ is always false: there is no x which satisfies that nonequality, therefore the given set is empty. You didn't even specify what y is, so your expression has no meaning. To relieve any doubt, use the following definition of subset: If A and B are sets, then A is called a subset of B if: $$x \in A \Rightarrow x \in B$$ the notation is $A \subset B$. Do you see now why the empty set is a subset of every set.
 P: 509 Also note that this property conveniently gives us the property that the intersection of two sets which have no elements in common is still a set, the empty set (since it is a subset of both sets).
P: 144
 Quote by Galileo No, it's correct. $x \not= x$ is always false: there is no x which satisfies that nonequality, therefore the given set is empty. You didn't even specify what y is, so your expression has no meaning. To relieve any doubt, use the following definition of subset: If A and B are sets, then A is called a subset of B if: $$x \in A \Rightarrow x \in B$$ the notation is $A \subset B$. Do you see now why the empty set is a subset of every set.

Yes! Thank you very much. I am always amazed!
P: 190
 Quote by HungryChemist While reading text, I had a question which I can not resolve by myself. Please Help me! it reads, The empty set( a vector space with no elements) is denoted as & (This symbol doesn't matter for the sake of argument, I don't know how to write the Zero with a line in the middle). I can understand what they mean by empty set. It must be somewhat like this; Set V = { }. But can such set with no elements has all the quality of being a vector space? If so, how can one show it does indeed meets all the ten axioms of vector space?
Yeah, as others pointed out, the empty set can't be a vector space because it has no zero vector. However, the empty set does span the vector space consisting of the zero vector, according to the definition of span: The span of a set of vectors is the smallest subspace containing those vectors.
Math
Emeritus
Thanks
PF Gold
P: 38,900
 Quote by PBRMEASAP Yeah, as others pointed out, the empty set can't be a vector space because it has no zero vector. However, the empty set does span the vector space consisting of the zero vector, according to the definition of span: The span of a set of vectors is the smallest subspace containing those vectors.
In what sense does the span of the empty set equal the set containing the 0 vector?

 Related Discussions Special & General Relativity 5 Special & General Relativity 3 Special & General Relativity 24 Special & General Relativity 5 General Physics 17