
#1
Sep1005, 12:57 AM

P: 9

Here is the problem word for word:
A charged cork ball of mass 1.53g is suspended on a light string in the presense of a uniform electric field. When the electric field has an xcomponent of 346000 N/C and a ycomponent of 383000 N/C, the ball is in equilibrium at 37.6151 degrees. The acceleration of gravity is 9.8 m/s^2 and the Coulomb constant is 8.99X10^9 Nm^2/C^2. Find the charge on the ball. I know that E=F/q; therefore, after rearranging the formula you get q=F/E, which will give me the charge of the ball. When solving for the magnitude of the force on the ball, I get stuck. The picture of the problem shows E to be at an angle as suggested by xcomponent of 346000 N/C and a ycomponent of 383000 N/C, which suggests the field to be at 47.91 degrees. Should I even worry about the angle of the electrical field? I guess the fact that the problems states that the electric field has an x and y component is throwing me off. Anyone have any hints on how to get started in the right direction on this problem? 



#2
Sep1005, 02:47 AM

P: 2,223

Find the E field vector by doing the vector sum, then from there, you can just say that an E field of magnitude xxx N/C deflects a ball of mass 1.53g by 37.6151 degrees in the direction (or in the opposite direction if its negatively charged) of the field.




#3
Sep1005, 04:56 AM

P: 9

That is exactly the help I was needing. I believe I can work the problem now. Thanks for the clarification.



Register to reply 
Related Discussions  
electric field of a line charge and point charge  Introductory Physics Homework  14  
Tennis Ball Vs Glass Ball Vs Rubber Ball  Classical Physics  6  
The Electric Field of a Ball of Uniform Charge Density  Advanced Physics Homework  5  
The work required for adding a charge to an infinite charge distribution  Advanced Physics Homework  1  
net charge VS dipole moment in E field by infinite line charge  General Physics  5 