Register to reply

Coefficient of kinetic friction

by missyjane
Tags: coefficient, friction, kinetic
Share this thread:
missyjane
#1
Oct5-05, 04:16 PM
P: 16
A 12kg block is released from rest on an inclined plane with angle 35. Acceleration of the block is 1.23457 The acceleration of gravity is 9.8m/2^2.

What is the coefficient of kinetic friction for the incline?


I found the normal force (12*9.8*cos35)=96.33228
Fnet=ma=12*1.23457=14.81484
Ff=N-Fnet=81.51744
So, I thought mu=Fnet/N=0.8462, but that answer is apparently wrong. Any ideas?
Phys.Org News Partner Science news on Phys.org
Bees able to spot which flowers offer best rewards before landing
Classic Lewis Carroll character inspires new ecological model
When cooperation counts: Researchers find sperm benefit from grouping together in mice
amcavoy
#2
Oct5-05, 04:25 PM
P: 666
Quote Quote by missyjane
A 12kg block is released from rest on an inclined plane with angle 35. Acceleration of the block is 1.23457 The acceleration of gravity is 9.8m/2^2.

What is the coefficient of kinetic friction for the incline?


I found the normal force (12*9.8*cos35)=96.33228
Fnet=ma=12*1.23457=14.81484
Ff=N-Fnet=81.51744
So, I thought mu=Fnet/N=0.8462, but that answer is apparently wrong. Any ideas?
[tex]F_f+F_g+N=m\vec{a}[/tex]

You know that the mass is 12kg, the and the acceleration 1.23457 m/s2. You know that the product of those two is equal to the frictional force + the downward force. The downward force is the sum of the gravitational force and the normal force. Make a few substitutions and you should have your answer.

Alex
missyjane
#3
Oct5-05, 04:38 PM
P: 16
Ok, so gravitational force is 9.8*12, right? That would be 117.6N. So the downward force is 117.6+96.33228=213.93228. But that means ma does not equal the product of the two. Where am I messing up?

amcavoy
#4
Oct5-05, 04:43 PM
P: 666
Coefficient of kinetic friction

Quote Quote by missyjane
Ok, so gravitational force is 9.8*12, right? That would be 117.6N. So the downward force is 117.6+96.33228=213.93228. But that means ma does not equal the product of the two. Where am I messing up?
This will be much easier for you if you write it out with vectors. For this type of problem, try the following:

1. Draw a free-body diagram.
2. Write Newton's Second Law in vector form (important!).
3. Write an expression for each of the forces.
4. Write a scalar equation for each.
5. Express any constraints on your equations.
6. Solve the final system(s) of equations.


Register to reply

Related Discussions
Coefficient of kinetic friction Introductory Physics Homework 1
Coefficient of kinetic friction Introductory Physics Homework 6
Coefficient of kinetic friction Introductory Physics Homework 3
Coefficient of Kinetic Friction... Introductory Physics Homework 3
Low coefficient vs. high coefficient of kinetic friction General Physics 2