
#1
Oct905, 08:41 AM

P: 22

Hello
i have a question : dx/dt=(a*x)+(b*y)+(c*z) dy/dt=(d*x)+(e*y)+(f*z) dz/dt=(g*x)+(h*y)+(i*z) where a,b,c,d,e,f,g,h,i are constants i want a proof of this and finding the values of x,y and z?? 



#2
Oct905, 08:55 AM

Sci Advisor
HW Helper
PF Gold
P: 12,016

Proof of what??.
What do you mean by finding "the values of x,y,z"? x(t), y(t), z(t) are FUNCTIONS of the variable "t", do you want to find which set of functions satisfies your system of differential equations? 



#3
Oct905, 10:30 AM

P: 22

I want the set of functions satisfies that system of differential equations 



#4
Oct905, 11:31 AM

Sci Advisor
HW Helper
PF Gold
P: 12,016

a question in coupled differential equation
what do you know of linear algebra?




#5
Oct905, 03:29 PM

Sci Advisor
HW Helper
P: 1,593

So in general, determine the eigenvalues and eigenvectors of the coefficient matrix.
First start with finding the eigenvalues via: [tex]\text{det}\left(\mathbf{A}\lambda\mathbf{I}\right)=0[/tex] Then calculate the eigenvectors as: [tex]\mathbf{A}\mathbf{X}=\lambda_i\mathbf{X}[/tex] For each eigenvalueeigenvector pair, there is a solution. Linear combinations of the solutions create the general solution. Edit: Oh by the way, what do the solutions look like anyway? 



#6
Oct1105, 05:25 AM

P: 22

thank you for your helping
my idea is : suppose x(t)=x(0) exp(iwt) y(t)=y(0) exp(iwt) z(t)=z(0) exp(iwt) how can i solve my previous question by using this informations?? 



#7
Oct1105, 07:24 AM

Sci Advisor
HW Helper
P: 1,593

Well, using the eigenvalues, end up with a matrix equation for the solution in the form:
[tex] \mathbf{X}=c_1e^{\lambda_1 t} \left( \begin{array}{c} v_1 \\ v_2 \\ v_3 \\ \end{array} \right) + c_2 e^{\lambda_2 t} \left( \begin{array}{c} r_1 \\ r_2 \\ r_3 \\ \end{array} \right) + c_3 e^{\lambda_3 t} \left( \begin{array}{c} s_1 \\ s_2 \\ s_3 \\ \end{array} \right) [/tex] 



#8
Oct1105, 08:05 AM

Sci Advisor
HW Helper
P: 1,593

Well, I have a question about this. That means what I'm about to say I'm not sure of:
In the case of complex eigenvalues, I assume the solution is of the form: [tex] \mathbf{X}=c_1e^{\lambda_1 t} \left( \begin{array}{c} v_1 \\ v_2 \\ v_3 \\ \end{array} \right) + c_2\mathbf{Y}+c_3\mathbf{Z} [/tex] where Y and Z are the real and imaginary parts respectively of the complexeigenvalue contribution. 



#9
Oct1205, 07:42 AM

Sci Advisor
HW Helper
P: 1,593

Well . . . suppose I should just work one and find out. Hum . . . let me see . . . Ok, how about this one:
[tex] \mathbf{X}^{'}= \left( \begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{array} \right) \mathbf{X};\quad \mathbf{X}(0)= \left( \begin{array}{c} x_0 \\ y_0 \\ z_0 \end{array} \right) [/tex] You game Uob or what? 



#10
Oct1205, 06:01 PM

Sci Advisor
HW Helper
P: 1,593

Suppose I should start with calculating eigenvalues:
[tex] \text{det}\left(\mathbf{A}\lambda\mathbf{I}\right)=0 [/tex] so for the 3x3 matrix above, that would be: [tex] \text{det}\left(\mathbf{A}\lambda\mathbf{I}\right)= (1\lambda) \left( \begin{array}{cc} (1+\lambda} & 0 \\ 0 & (1\lambda) \end{array} \right)+3 \left( \begin{array}{cc} 0, &(1+\lambda} \\ 3 & 0 \end{array}\right)=0 [/tex] or: [tex] 108\lambda+\lambda^2\lambda^3=0 [/tex] Since this is not a problem focusing on cubic equations, I simply use Mathematica to calcualte the eigenvalues: [tex]\text{Eigenvalues[Matrix]}[/tex] They are: [tex]\lambda_1=1[/tex] [tex]\lambda_2=1+3i[/tex] [tex]\lambda_3=13i[/tex] 



#11
Oct1305, 03:09 PM

Sci Advisor
HW Helper
P: 1,593

Did I mention Mathematica has an Eigenvector[Matrix] command? However, I'm not good at calculating eigenvectors so I really should do a few by hand:
The eigenvector equation is simple: [tex] \mathbf{M}v=\lambda v [/tex] So for: [tex] \lambda_1=1 [/tex] [tex] \left( \begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{array} \right) \left( \begin{array}{c} x \\ y \\ z \end{array} \right)=1 \left( \begin{array}{c} x \\ y \\ z \end{array} \right) [/tex] So: [tex]x+3z=x[/tex] [tex]y=y[/tex] [tex]3x+z=z[/tex] The middle one is easy: [tex] 0y=0 [/tex] That means y can be anything so let y=1. The other two: [tex]2x+3z=0 [/tex] [tex]3x+2z=0[/tex] The simple thing here, since we're looking for ANY eigenvector, is to just pick the zero solution and thus: [tex] v_1= \left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) [/tex] For: [tex] \lambda_2=(1+3i) [/tex] [tex] \left( \begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{array} \right) \left( \begin{array}{c} x \\ y \\ z \end{array} \right)=(1+3i) \left( \begin{array}{c} x \\ y \\ z \end{array} \right) [/tex] So that's: [tex]x+3z=(1+3i)x[/tex] [tex]y=(1+3i)y[/tex] [tex]3x+z=(1+3i)z[/tex] For the middle one, the only way ay=y is if y=0. The other two yield: [tex] 3z=3ix [/tex] or: [tex]z=ix[/tex] so let x=1 and z=i. Thus: [tex] v_2= \left( \begin{array}{c} 1 \\ 0 \\ i \end{array} \right) [/tex] Same dif for the other eigenvalue which yields: [tex] v_3= \left( \begin{array}{c} 1 \\ 0 \\ i \end{array} \right) [/tex] Mathematica returns equivalent eigenvectors. Thus we are led to the solution in matrix form: [tex] \mathbf{X}=c_1e^{t} \left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right)+ c_2e^{(1+3i)t} \left( \begin{array}{c} 1 \\ 0 \\ i \end{array} \right)+ c_3e^{(13i)t} \left( \begin{array}{c} 1 \\ 0 \\ i \end{array} \right) [/tex] You ever work a problem and the answer is just as difficult as the question? 



#12
Oct1405, 06:40 AM

P: 22

thanks but how you can find the values of Lambdas in your solution?? 



#13
Oct1405, 05:57 PM

Sci Advisor
HW Helper
P: 1,593

[tex] \text{det}\left(\mathbf{A}\lambda\mathbf{I}\right)=0 [/tex] So performing that matrix algebra gives us: [tex] \text{det}\left(\mathbf{A}\lambda\mathbf{I}\right)= (1\lambda) \left( \begin{array}{cc} (1+\lambda} & 0 \\ 0 & (1\lambda) \end{array} \right)+3 \left( \begin{array}{cc} 0, &(1+\lambda} \\ 3 & 0 \end{array}\right)=0 [/tex] or: [tex] 108\lambda+\lambda^2\lambda^3=0 [/tex] Is that what you're having problems with or just figuring the roots of that cubic equation? 



#14
Oct1405, 07:26 PM

Sci Advisor
HW Helper
P: 1,593

After reviewing, I wish to clear up two points in my efforts to solve this equation:
1. There is no need to directly calculate the eigenvector of [itex] \lambda_3[/itex]: The complex conjugate of an eigenvector for [itex] \lambda_2[/itex] is an eigenvector for [itex]\lambda_3[/tex]. So above I calculated the eigenvector for [itex](1+3i)[/itex] to be: [tex]v_2=\left(\begin{array}{c} 1 \\0 \\i\end{array}\right)[/tex] Therefore to calculate the eigenvector for [itex](13i)[/itex], conjugate the eigenvector for [itex](1+3i)[/tex]: If: [tex]v_2=\left(\begin{array}{c} 1+0i \\0+0i \\0+i\end{array}\right)[/tex] Then: [tex]\overline{v_2}=v_3=\left(\begin{array}{c} 10i \\0i \\0i\end{array}\right)=\left(\begin{array}{c} 1 \\0 \\i\end{array}\right)[/tex] See how that works? Ok that's one. 2. The complex eigenvalues both yield the same solution! That is, the solution from (1+3i) is the same solution as that from (13i). Go figure. I did. So that's the reason we only need calculate the Real and Complex contribution from ONE member of each complex pair. And also, it's VERY convenient to write the eigenvectors as: [tex]\left(\begin{array}{c} 1 \\0 \\i\end{array}\right)=\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)[/tex] Alright, so lets compute the Real part and the Complex part for: [tex] \begin{align*} e^{(1+3i)t}\left(\begin{array}{c} 1 \\0 \\i\end{array}\right) &=e^{(1+3i)t}\left[\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right] \\ &=e^t\left[(Cos(3t)+iSin(3t))\left\{\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+ i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}\right] \\ &=e^t\left[Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+iCos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+iSin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right] \\ &=e^t\left[\left\{Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}+i\left\{Cos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+Sin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)\right\}\right] \end{align} [/tex] Note how the Real and Complex parts have been separated. Each one is a solution to the system. Therefore, this with the first solution then yields the general solution: [tex] \begin{align*} \mathbf{X}&=C_1e^{t}\left(\begin{array}{c} 0 \\1 \\0\end{array}\right) \\ &+e^t\left[C_2\left\{Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}+C_3\left\{Cos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+Sin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)\right\}\right] \end{align} [/tex] That's read as: [tex]x(t)=C_2e^tCos(3t)+C_3e^tSin(3t)[/tex] [tex]y(t)=C_1e^{t}[/tex] [tex]z(t)=C_2e^tSin(3t)+C_3e^tCos(3t)[/tex] So how about a 4x4, two complexconjugate pairs. Suppose only need to calculate an eigenvalueeigenvector for one member of each set, and then just do what I did above. 



#15
Oct1505, 01:11 AM

P: 22

thanks but I want just how you figuring the roots of that cubic equation? 



#16
Oct1505, 04:58 AM

Sci Advisor
HW Helper
P: 1,593





#17
Oct1505, 05:06 AM

P: 22

can you explain that?? 



#18
Oct1505, 05:26 AM

Sci Advisor
HW Helper
P: 1,593




Register to reply 
Related Discussions  
first order coupled differential equations  Differential Equations  11  
Coupled differential equations  Calculus & Beyond Homework  2  
Coupled first order differential equations  Differential Equations  5  
Coupled first order differential equations  Differential Equations  2  
nonlinear coupled differential equation  Differential Equations  1 