What is Tensor calculus: Definition and 98 Discussions

In mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime).
Developed by Gregorio Ricci-Curbastro and his student Tullio Levi-Civita, it was used by Albert Einstein to develop his general theory of relativity. Unlike the infinitesimal calculus, tensor calculus allows presentation of physics equations in a form that is independent of the choice of coordinates on the manifold.
Tensor calculus has many applications in physics, engineering and computer science including elasticity, continuum mechanics, electromagnetism (see mathematical descriptions of the electromagnetic field), general relativity (see mathematics of general relativity), quantum field theory, and machine learning.

Working with a main proponent of the exterior calculus Elie Cartan, the influential geometer Shiing-Shen Chern summarizes the role of tensor calculus:In our subject of differential geometry, where you talk about manifolds, one difficulty is that the geometry is described by coordinates, but the coordinates do not have meaning. They are allowed to undergo transformation. And in order to handle this kind of situation, an important tool is the so-called tensor analysis, or Ricci calculus, which was new to mathematicians. In mathematics you have a function, you write down the function, you calculate, or you add, or you multiply, or you can differentiate. You have something very concrete. In geometry the geometric situation is described by numbers, but you can change your numbers arbitrarily. So to handle this, you need the Ricci calculus.

View More On Wikipedia.org
  1. J

    Calculating the components of the Ricci tensor

    (I) Using the relevant equation I find this to be ## \frac{e^{x}}{2} ##. (II) Using the relation for the Ricci tensor, I find that the only non-zero components are...
  2. Baela

    I Action of metric tensor on Levi-Civita symbol

    We know that a metric tensor raises or lowers the indices of a tensor, for e.g. a Levi-Civita tensor. If we are in ##4D## spacetime, then \begin{align} g_{mn}\epsilon^{npqr}=\epsilon_{m}{}^{pqr} \end{align} where ##g_{mn}## is the metric and ##\epsilon^{npqr}## is the Levi-Civita tensor. The...
  3. sarriiss

    A Preserving Covariant Derivatives of Null Vectors Under Variation

    Having two null vectors with $$n^{a} l_{a}=-1, \\ g_{ab}=-(l_{a}n_{b}+n_{a}l_{b}),\\ n^{a}\nabla_{a}n^{b}=0$$ gives $$\nabla_{a}n_{b}=\kappa n_{a}n_{b},\\ \nabla_{a}n^{a}=0,\\ \nabla_{a}l_{b}=-\kappa n_{a}l_{b},\\ \nabla_{a}l^{a}=\kappa$$. How to show that under the variation of the null...
  4. P

    I Tensor Calculus (Einstein notation)

    Hello, I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
  5. Vanilla Gorilla

    B Attempted proof of the Contracted Bianchi Identity

    My Attempted Proof ##R^{mn}_{;n} - \frac {1} {2} g^{mn} R_{;n} = 0## ##R^{mn}_{;n} = \frac {1} {2} g^{mn} R_{;n}## So, we want ##2 R^{mn}_{;n} = g^{mn} R_{;n} ## Start w/ 2nd Bianchi Identity ##R_{abmn;l} + R_{ablm;n} + R_{abnl;m} = 0## Sum w/ inverse metric tensor twice ##g^{bn} g^{am}...
  6. binbagsss

    I 4d integration/differentiation notation and the total derivative

    This is probably a stupid question but, ## \frac{d\partial_p}{d\partial_c}=\delta^p_c ## For the notation of a 4D integral it is ##d^4x=dx^{\nu}##, so if I consider a total derivative: ##\int\limits^{x_f}_{x_i} \partial_{\mu} (\phi) d^4 x = \phi \mid^{x_f}_{x_i} ## why is there no...
  7. L

    A Going from Cauchy Stress Tensor to GR's Energy Momentum Tensor

    Why do the Cauchy Stress Tensor & the Energy Momentum Tensor have the same SI units? Shouldn't adding time as a dimension changes the Energy Momentum Tensor's units? Did Einstein start with the Cauchy Tensor when he started working on the right hand side of the field equations of GR? If so, What...
  8. G

    A Principal Invariants of the Weyl Tensor

    It's possible that this may be a better fit for the Differential Geometry forum (in which case, please do let me know). However, I'm curious to know whether anyone is aware of any standard naming convention for the two principal invariants of the Weyl tensor. For the Riemann tensor, the names of...
  9. Onyx

    B Sign of Expansion Scalar in Expanding FLRW Universe

    Considering the FLWR metric in cartesian coordinates: ##ds^2=-dt^2+a^2(t)(dx^2+dy^2+dz^2)## With ##a(t)=t##, the trace of the extrinsic curvature tensor is ##-3t##. But why is it negative if it's describing an expanding universe, not a contracting one?
  10. A

    Showing that the gradient of a scalar field is a covariant vector

    In a general coordinate system ##\{x^1,..., x^n\}##, the Covariant Gradient of a scalar field ##f:\mathbb{R}^n \rightarrow \mathbb{R}## is given by (using Einstein's notation) ## \nabla f=\frac{\partial f}{\partial x^{i}} g^{i j} \mathbf{e}_{j} ## I'm trying to prove that this covariant...
  11. U

    How to prove ##V_{ai;j}=V_{aj;i}## in curved space using the given equation?

    Question ##1##. Consider the following identity \begin{equation} \epsilon^{ij}_{\phantom{ij}k}\epsilon_{i}^{\phantom{i}lm}=h^{jl}h^{m}_{\phantom{m}k}-h^{jm}h^{l}_{\phantom{l}k} \end{equation} which we know holds in flat space. Does this identity still hold in curved space? and if so, how...
  12. yucheng

    Contravariant derivative of a tensor field in terms of generalized coordinates?

    1. The laplacian is defined such that $$ \vec{\nabla} \cdot \vec{\nabla} V = \nabla_i \nabla^i V = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^{i}} \left(\sqrt{Z} Z^{ij} \frac{\partial V}{\partial Z^{j}}\right)$$ (##Z## is the determinant of the metric tensor, ##Z_i## is a generalized...
  13. yucheng

    Derivative of Determinant of Metric Tensor With Respect to Entries

    We know that the cofactor of determinant ##A##, is $$\frac{\partial A}{\partial a^{r}_{i}} = A^{i}_{r} = \frac{1}{2 !}\delta^{ijk}_{rst} a^{s}_{j} a^{t}_{k} = \frac{1}{2 !}e^{ijk} e_{rst} a^{s}_{j} a^{t}_{k}$$ By analogy, $$\frac{\partial Z}{\partial Z_{ij}} = \frac{1}{2 !}e^{ikl} e^{jmn}...
  14. P

    A Need some clarifications on tensor calculus please

    I've started reading up on tensors. Since this lies well outside my usual area, I need some clarifications on some tensor calculus issues. Let ##A## be a tensor of order ##j > 1##. Suppose that the tensor is cubical, i.e., every mode is of the same size. So for example, if ##A## is of order 3...
  15. binbagsss

    A Euler-Lagrange Tensor Equations

    I need to vary w.r.t ##a_{\alpha \beta} ## ##\frac{\partial L}{\partial_{\mu}(\partial_{\mu}{a_{\alpha\beta}})}-\frac{\partial L}{\partial {a_{\alpha \beta}}}## (1) I am looking at varying the term in the Lagrangian of ##\frac{1}{3}A^{\mu} \partial_{\mu}\Phi ## where ##A^{\beta}=\partial_k...
  16. Istiak

    Book Suggestion for Tensor Calculus

    Homework Statement:: Book suggestion Relevant Equations:: Calculus Book suggestion for tensor calculus.
  17. A

    I Purpose of Tensors, Indices in Tensor Calculus Explained

    I would like to know what is the utility or purpose for which the elements below were defined in the Tensor Calculus. They are things that I think I understand how they work, but whose purpose I do not see clearly, so I would appreciate if someone could give me some clue about it. Tensors. As...
  18. U

    Help with Kaluza Klein Christoffel symbols

    If I want to calculate ##\tilde{\Gamma}^\lambda_{\mu 5}##, I will write \begin{align} \tilde{\Gamma}^\lambda_{\mu 5} & = \frac{1}{2} \tilde{g}^{\lambda X} \left(\partial_\mu \tilde{g}_{5 X} + \partial_5 \tilde{g}_{\mu X} - \partial_X \tilde{g}_{\mu 5}\right) \\ & =\frac{1}{2}...
  19. B

    I Divergence of first Piola-Kirchoff stress tensor

    Hi everyone, studying the bending of an incompressible elastic block of Neo-Hookean material, one finds out the first Piola-Kirchoff stress tensor as at page 182 (equation 5.93) where $e_r = cos(\theta)e_1 + \sin(\theta)e_2$ and $e_{\theta} = -sin(\theta)e_1 + \cos(\theta)e_2$ How is the...
  20. U

    Help with Tensors: Using Einstein Summation Convention

    Assuming Einstein summation convention, suppose $$R^2=\eta_{\mu\nu}x^{\mu}x^{\nu}$$ I was able to show that $$\partial_{\mu}R=\frac{\eta_{\mu\nu} x^{\nu}}{R}$$ by explicitly doing the covariant component of the four-gradient and using the kronecker tensor. However, how do I use the equation...
  21. T

    A Exploring Tensor Calculus: A Brief Introduction

    Hello.Questions: How tensor operations are done?Like addition, contraction,tensor product, lowering and raising indices. Why do we need lower and upper indices if we want and not only lower? Is a tensor a multilinear mapping?Or a generalisation of a vector and a matrix? Could a tensor be...
  22. L

    I Proving Antisymmetry of Electromagnetic Field Tensor with 4-Force

    I've already made a post about this topic here, but I realized that I didn't understand the explanation on that post. in Chapter 7 of Rindler's book on relativity, in section about electromagnetic field tensor, he states that _and introducing a factor 1/c for later convenience, we can ‘guess’...
  23. Pyter

    A Help on some equations in Einstein's original papers

    Studying Einstein's original Die Grundlage der allgemeinen Relativitätstheorie, published in 1916's Annalen Der Physik, I came across some equations which I couldn't verify after doing the computations hinted at. The first are equations 47b) regarding the gravity contribution to the...
  24. Vyrkk

    A Covariant derivative and connection of a covector field

    I am trying to derive the expression in components for the covariant derivative of a covector (a 1-form), i.e the Connection symbols for covectors. What people usually do is take the covariant derivative of the covector acting on a vector, the result being a scalar Invoke a product rule to...
  25. George Keeling

    A Second order partial derivatives vanish?

    At the end of a long proof I came across something in tensor calculus that seems too good to be true. And if something seems too good to be true ... The something is that a second order partial derivative vanishes if one of the parts in the denominator is in the same reference frame as the...
  26. Prez Cannady

    A Einstein Field Equations: Covariant vs Contravariant

    Depending on the source, I'll often see EFE written as either covariantly: $$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8 \pi GT_{\mu\nu}$$ or contravariantly $$R^{\alpha\beta} - \frac{1}{2}Rg^{\alpha\beta} = 8 \pi GT^{\alpha\beta}$$ Physically, historically, and/or pragmatically, is there a...
  27. K

    I Covariant Derivatives: Doubt on Jolt & Proving Zj Γjk Vi = 0

    I've just learned about the covariant derivatives (##\nabla_i## and ##\delta/\delta t##) and I have a doubt. We should be able to say that $$ J^i = \frac{\delta A^i}{\delta t} = \frac{\delta^2 V^i}{\delta^2 t} = \frac{\delta^3 Z^i}{\delta^3 t} $$ where ##J## is the jolt. This...
  28. K

    I Christoffel symbol ("undotting")

    I hope you can understand my notation. The Christoffel symbol can be defined through the relation$$ \frac{\partial \pmb{Z}_i} {\partial Z^k} = \Gamma_{ik}^j \pmb{Z}_j $$ I can solve for the Christoffel symbol this way: $$ \frac{\partial \pmb{Z}_i} {\partial Z^k} \cdot \pmb{Z}^m = \Gamma_{ik}^j...
  29. Orodruin

    Insights The 10 Commandments of Index Expressions and Tensor Calculus - Comments

    Greg Bernhardt submitted a new PF Insights post The 10 Commandments of Index Expressions and Tensor Calculus Continue reading the Original PF Insights Post.
  30. shahbaznihal

    I Solving Tensor Calculus Question from Schutz Intro to GR

    I am doing a problem from Schutz, Introduction to general relativity.The question asks you to find a coordinate transformation to a local inertial frame from a weak field Newtonian metric tensor ##(ds^2=-(1+2\phi)dt^2+(1-2\phi)(dx^2+dy^2+dz^2))##. I looked at the solution from a manual and it...
  31. Abhishek11235

    A Finding the unit Normal to a surface using the metric tensor.

    Let $$\phi(x^1,x^2...,x^n) =c$$ be a surface. What is unit Normal to the surface? I know how to find equation of normal to a surface. It is given by: $$\hat{e_{n}}=\frac{\nabla\phi}{|\nabla\phi|}$$However the answer is given using metric tensor which I am not able to derive. Here is the answer...
  32. Antarres

    Null curve coordinate system

    So, I've been studying some tensor calculus for general theory of relativity, and I was reading d'Inverno's book, so out of all exercises in this area(which I all solved), this 6.30. exercise is causing quite some problems, so far. Moreover, I couldn't find anything relevant on the internet that...
  33. G

    Orthogonal Projection of Perfect Fluid Energy Momentum

    Homework Statement Derive the relativistic Euler equation by contracting the conservation law $$\partial _\mu {T^{\mu \nu}} =0$$ with the projection tensor $${P^{\sigma}}_\nu = {\delta^{\sigma}}_\nu + U^{\sigma} U_{\nu}$$ for a perfect fluid. Homework Equations $$\partial _\mu {T^{\mu \nu}} =...
  34. F

    I Demo of cosine direction with curvilinear coordinates

    1) Firstly, in the context of a dot product with Einstein notation : $$\text{d}(\vec{V}\cdot\vec{n} )=\text{d}(v_{i}\dfrac{\text{d}y^{i}}{\text{d}s})$$ with ##\vec{n}## representing the cosine directions vectors, ##v_{i}## the covariant components of ##\vec{V}## vector, ##y^{i}## the...
  35. I

    Operation with tensor quantities in quantum field theory

    I would like to know where one may operate with tensor quantities in quantum field theory: Minkowski tensors, spinors, effective lagrangians (for example sigma models or models with four quark interaction), gamma matrices, Grassmann algebra, Lie algebra, fermion determinants and et cetera. I...
  36. F

    I Deduce Geodesics equation from Euler equations

    I am using from the following Euler equations : $$\dfrac{\partial f}{\partial u^{i}}-\dfrac{\text{d}}{\text{d}s}\bigg(\dfrac{\partial f}{\partial u'^{i}}\bigg) =0$$ with function ##f## is equal to : $$f=g_{ij}\dfrac{\text{d}u^{i}}{\text{d}s}\dfrac{\text{d}u^{j}}{\text{d}s}$$ and we have...
  37. Adrian555

    Natural basis and dual basis of a circular paraboloid

    Hi everyone!I'm trying to obtain the natural and dual basis of a circular paraboloid parametrized by: $$x = \sqrt U cos(V)$$ $$y = \sqrt U sen(V)$$ $$z = U$$ with the inverse relationship: $$V = \arctan \frac{y}{x}$$ $$U = z$$ The natural basis is: $$e_U = \frac{\partial \overrightarrow{r}}...
  38. Vance Grey

    What is the meaning of tensor calculus?

    https://www.physicsforums.com/attachments/205736
  39. F

    I Factors for contravariant components with transported vector

    I am currently coding a small application that reproduces the transport of a vector along a geodesic on a 2D sphere. Here's a capture of this application : You can see as pink vectors the vectors of curvilinear coordinates and in cyan the transported vector. The transport of vector along...
  40. M

    I How is a vector a directional derivative?

    I'm going through a basic introduction to tensors, specifically https://web2.ph.utexas.edu/~jcfeng/notes/Tensors_Poor_Man.pdf and I'm confused by the author when he defines vectors as directional derivatives at the bottom of page 3. He defines a simple example in which ƒ(x^j) = x^1 and then...
  41. ParabolaDog

    Struggling immensely with tensors in multivariable calculus

    Homework Statement If f(x) is a scalar-valued function, show that ∂ƒ²/∂xi∂xj are the components of a Cartesian tensor of rank 2. Homework Equations N/A The Attempt at a Solution I don't even know where to begin. We began learning tensors in multivariable calculus (though I don't think this is...
  42. M

    Vector Calculus - Tensor Identity Problem

    Homework Statement Homework Equations The Attempt at a Solution I am really lost here because our professor gave us no example problems leading up to the final exam and now we are expected to understand everything about vector calculus. This is my attempt at the cross product and...
  43. H

    Classical Modern Tensor Calculus/Continuum Mech Textbook

    Hi, I'm looking for a modern, colourful, illustrative introductory textbook to work through on tensor calculus/continuum mechanics. I'd like one with lots of physical examples, exercises, summaries, etc. I'd like an emphasis on engineering. Something in the mould of Frank White's Fluid...
  44. M

    I Trying to understand covariant tensor

    I am taking a course on GR and trying to understand Tensor calculus. I think I understand contravariant tensor (transformation of objects such as a vector from one frame to another) but I am having a hard time with covariant tensors. I looked into the Wikipedia page...
  45. V

    A How to switch from tensor products to wedge product

    Suppose we are given this definition of the wedge product for two one-forms in the component notation: $$(A \wedge B)_{\mu\nu}=2A_{[\mu}B_{\nu]}=A_{\mu}B_{\nu}-A_{\nu}B_{\mu}$$ Now how can we show the switch from tensor products to wedge product below...
  46. V

    A Geodesic defined for a non affine parameter

    The geodesic general condition, i.e. for a non affine parameter, is that the directional covariant derivative is an operator which scales the tangent vector: $$\zeta^{\mu}\nabla_{\mu}\zeta_{\nu}=\eta(\alpha)\zeta_{\nu}$$ I have three related questions. When $$\alpha$$ is an affine parameter...
  47. ibkev

    B Tensor Calculus vs Tensor Analysis?

    I've seen the terms tensor calculus and tensor analysis both being used - what is the difference?
  48. Jianphys17

    Differential Geometry book with tensor calculus

    Hi, there is a book of dg of surfaces that is also about tensor calculus ? Currently i study with Do Carmo, but i am looking for a text that there is also the tensor calculus! Thank you in advance
  49. redtree

    A Help with covariant differentiation

    I'm having trouble evaluating the following expression (LATEX): ##\nabla_{i}\nabla_{j}T^{k}= \nabla_{i} \frac{\delta T^{k}}{\delta z^{j}} + \Gamma^{k}_{i m} \frac{\delta T^{m}}{\delta z^{i}} + \Gamma^{k}_{i m} \Gamma^{m}_{i l} T^{l}## What are the next steps to complete the covariant...
  50. M

    A Tensor Calculus and Divergence

    Hi PF! I have a question on the dyadic product and the divergence of a tensor. I've never formally leaned this, although I'm sure it's published somewhere, but this is how I understand the operators. Can someone tell me if this is right or wrong? Let's say I have some vector ##\vec{V} = v_x i +...
Back
Top