86 3. VECTOR SPACES

4. Linear Transformations

DEFINITION 47. Let V' and U be vector spaces. A linear transformation from
V to U is a map

T:V U

with the following two properties for all v,w € V and all scalars r :
T(rv) = rT(v)
T(v4+w) = T(v)+T(w)

EXAMPLE 72. As before, if V. =R" and U = R™, and if M is a matriz with n
columns and m rows, then v+— MU is linear.

EXAMPLE 73. IfV = C[0,1], the vector space of continuous functions on [0,1],
then the map I : C'[0,1] — R defined by

1
MﬂAf@ﬁ

is linear.

I(rf) = A(ﬁ@»ﬁ

1
. r/ £ (1) dt
0
rI(f)

I(f+g) = A(f@+ﬂ@ﬂﬁ

1 1
= / f(t)dt+/ g(t)dt
0 0
I(f)+1(g)
ExXAMPLE 74. If V = C0,1], and if r € [0,1], then the map &, : C'[0,1] — R
defined by

is linear.

er(sf) = (sf)(r)
sf(r)
= s& (f)
e(f+g9) = (f+9) ()
= f(r)+g(r)
= 5r(f)+5r(g)
ExaMPLE 75. If V = C'[0,1], and if g € C[0,1] is a fized continuous map,
then the map T, : C'[0,1] — C'[0,1] defined by

fQuu@=1fmwﬂwﬁ
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is linear. - For example, we could take g (x) = x. Then

x T
T, (sino) (z) = / g (t)sin (¢) dt :/ t? sin (t) dt
0 0
= —2%cosx+2cosx + 2xsinz — 2

-If g(x) = 23. Then

T,(1-z+2%) (z) = /xt?’ (1—t+¢%)dt
0

1 1 1
= —z*——2% 4 -af

This map is linear:

T, (rf) () = /(fg(t) (rf (1)) dt
- /xrg(t)f(t)dt
0
- / g (t) f (1) dt
= T, (f) (2)
T,(fm)@ = [ g)(F®)+ho)d

) F0) g (0 h(0) de

x

I
c— 55— 55—

g(t)f(t)dw/ozg(t)h(t)dt
= T,(f) (@) + T, () (2)

EXAMPLE 76. IfV = C [0,1], the vector space of all continuously differentiable
functions defined on [0,1], then the map d: V — C'[0,1] defined by

_ 4

a() =4

s linear.

aef) = = (f)
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d(f+g) = (I +9)
i dg

dr dx
= df +dg

4.1. Properties of Linear Transformation.

ProprosITION 21. IfT :V — U is a linear transformation, then
(1) T (o) = o, and
(2) T(=v)=-T(v).

Proor. We compute:

T(o) = T(o+o0)

= T (o) + T (o) (2nd property)

So
T (o) = o (subtract T (o) from both sides)
And
T(-v) = T(-Dv)
= (=1)T(v) (1st propery of linear maps)
—T(v)

ProprOSITION 22. IfT : W — V and S : V. — U are linear transformation,
then SoT : W — U is linear.

Proor. We compute:

(SoT)(rv) = S(T(rv)) def. of composition
r

S )

S (rT (v)) 1st property of linearity applied to T

= rS(T(v))
r(SoT)(v) def. of composition

1st property of linearity applied to S

and
(SoT)(u+v) S(T(u+v)) def. of composition

S (T (u)+ T (v)) 2nd property of linearity applied to T
S(T (u)) + S (T (v)) 2nd property of linearity applied to S
(SoT)(u)+ (SoT)(v) def. of composition

O

DEFINITION 48. Let U and V' be vector spaces. An isomorphism from U to V
is a bijective linear transformation T : U — V
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Bijective means: The map is one-to-one (injective), and onto (surjective).
One-to-one: If T'(z1) = T (x2) then x1 = xo.

Onto: For every given v € V there is an element u € U so that T (u) = v.
Bijective maps T have inverses 7"

Tw=v <= u=T"(v)

PROPOSITION 23. If T :U — V is an isomorphism, then T~':V — U is also
linear and therefore an isomorphism.

PRrOOF. We have to show that
T (rv) =rT71(v)
Both are vectors in U, and
T(T ' (rv)) = rv
T (T (v)) = TT ' (v)=rv
Since T is one-to-one, it follows that T~ (rv) = rT~! (v).
The same method gives the second property of linearity (see homework). O

THEOREM 58. If U is a vector space with a finite basis B = (by,...,by,), then
Vv i— [V]g : U — R" is an isomorphism. This inverse of this isomorphism is the
linear transformation cp : R — U.



