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Math 4220/6220. Lecture 0, 
Review and summary of background information 
 
Introduction:  The most fundamental  concepts used in this course are those of continuity and 
differentiability (hence linearity), and integration.   
 
Continuity 
 Continuity is fundamentally the idea of approximation, since a continuous function is one 
for which f(x) approximates f(a) as well as desired whenever x approximates a well enough.  The 
precise version of this is couched in terms of "neighborhoods" of a point.  In that language we say f 
is continuous at a, if whenever a neighborhood V of f(a) is specified, there exists a corresponding 
neighborhood U of a, such that every point x lying in U has f(x) lying in V.   
 Then the intuitive statement "if x is close enough to a, then f(x) is as close as desired to f(a)", 
becomes the statement: "for every neighborhood V of f(a), there exists a neighborhood U of a, such 
that if x is in U, then f(x) is in V".   
 Neighborhoods in turn are often defined in terms of distances, for example an "r -
neighborhood" of a, consists of all points x having distance less than r from a.  In the language of 
distances, continuity of f at a becomes: "if a distance r > 0 is given, there is a corresponding distance 
s > 0, such that if dist(x,a) < s, (and f is defined at x) then dist(f(x),f(a)) < r".   
 More generally we say f(x) has limit L as x approaches a, if for every nbhd V of L, there is a 
nbhd U of a such that for every point of U except possibly a, we have f(x) in V.   Notice that the 
value f(a) plays no role in the definition of the limit of f at a.  Then f is continuous at a iff f(x) has 
limit equal to f(a) as x approaches a. 
 
Differentiability  
 Differentiability is the approximation of non - linear functions by linear ones.  Thus making 
use of differentiability requires one to know how to calculate the linear function which approximates 
a given differentiable one, to know the properties of the approximating linear function, and how to 
translate these into analogous properties of the original non linear function.  Hence a prerequisite for 
understanding differentiability, is understanding linear functions and the linear spaces on which they 
are defined.  I.e. linear algebra is a a prerequisite for understanding differential calculus. 
 
Linearity 
 Linear spaces capture the idea of flatness, and allow the concept of dimension.  A line with a 
specified point of origin is a good model of a one dimensional  linear space.  A Euclidean plane with 
an origin is a good model of a two dimensional linear space.  Every point in a linear space is thought 
of as equivalent to the arrow drawn to it from the specified origin.  This makes it possible to add 
points in a linear space by adding their position vectors via the parallelogram law, and to "scale" 
points by real numbers or "scalars", by stretching the arrows by this scale factor, (reversing the 
direction if the scalar is negative).   
 We often call the points of a linear space "vectors" and the space itself a "vector space".  A 
linear function, or linear map, is a function from one linear space to another which commutes with 
these operations, i.e. f is linear if f(v+w) = f(v)+f(w) and f(cv) = cf(v), for all scalars c, and all 
vectors v,w. 
 The standard model of a finite dimensional linear space is Rn.  A fundamental example of an 
infinite dimensional linear space is the space of all infinitely differentiable functions on R. 



2 

 
Linear Dimension 
 This is an algebraic version of the geometric idea of dimension.  A line is one - dimensional.  
This means: given any point on the line except the origin, the resulting non zero vector can be scaled 
to give any other vector on the line. Thus a linear space L is one dimensional if it contains a non zero 
vector v such that given any other vector x, there is a real number c such that x = cv.  We say then 
“v spans the one – dimensional space L”.   
 A plane S has the two dimensional property that if we pick two distinct points both 
different from the origin, and not collinear with the origin, then every point of the plane is the vector 
sum of multiples of the two corresponding vectors.  Thus a linear space S is two dimensional if it 
contains two non zero vectors v,w, such that w is not a multiple of v, but every vector in S has form 
cv+dw for some real numbers c,d.  We say the set {v,w} spans the 2 dimensional space S.   
 In general a set  of vectors {vj} spans a space S if every vector in S has form ∑ cjvj where 
the sum is finite.  The space is finite dimensional if the set {vj} can be taken to be finite.  A space 
has dimension r if it can be spanned by a set of r vectors but not by any set of fewer than r vectors.  
If S, T are finite dimensional linear spaces of the same dimension, and T contains S, then S = T.  
 
Linear maps 
 Unlike continuous maps, linear maps cannot raise dimension, and bijective linear maps 
preserve dimension exactly.  More precisely, if f:S-->T is a surjective linear map, then dim(T) ≤ 
dim(S), whereas if f:S-->T is an injective linear map, then dim(T) ≥ dim(S).  Still more precisely, if 
ker(f) = f-1(0), and im(f) = {f(v): v is in S} (a subset of T), then ker(f) and im(f) are both linear 
spaces, and dim(ker(f)) + dim(im(f)) = dimS.  This is the most fundamental and important property 
of dimension.  This is often stated as follows.  The “rank” of a linear map f:S-->T is the dimension 
of im(f), and the “nullity” of f is the dimension of ker(f).  Then for f:S-->T, we have rank(f) + 
nullity(f) = dim(S). 
 It follows that f is injective if and only if ker(f) = {0}, and surjective if dimT = dim(im(f)) < 
∞.  A linear map f:S-->T with a linear inverse is called an isomorphism.  A linear map is an 
isomorphism if and only if it is bijective.  If dimS = dimT < ∞, a linear map f:S-->T is bijective if 
and only if f is injective, if and only if f is surjective.  A simple and important example of a linear 
map is projection Rn x Rm-->Rn, taking (v,w)-->v.  This map is trivially surjective with kernel 
{0}xRm ≈ Rm. 
 The theory of dimension gives a strong criterion for proving the existence of solutions of 
linear equations f(x) = w in finite dimensional spaces.  Assume dimS = dimT < ∞, f:S-->T is linear, 
and f(x) = 0 only if x = 0.  Then for every w in T, the equation f(x) = w has a unique solution.   
 More generally, if S,T are finite dimensional, f:S-->T is linear, and dim(ker(f)) = dim(S) - 
dim(T) = r, then every equation f(x) = w has an r dimensional set of solutions.  We describe the set 
of solutions more precisely below. 
 Differentiation D:f-->f' is a linear map from the space of infinitely differentiable functions on 
R to itself.  The mean value theorem implies the kernel of D is the one dimensional space of 
constant functions, and the fundamental theorem of calculus implies D is surjective.   
 More generally, for every constant c, the differential operator (D-c) is surjective with kernel 
the one dimensional space of multiples of ect, hence a composition of n such operators has n 
dimensional kernel.  One can deduce that a linear combination ∑cjDj 0≤j≤n, cn≠0, with constant 
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coefficients cj, of compositions of D with maximum order n, has n dimensional kernel. 
 
Geometry of linear maps. 
 If f:S-->T is a linear surjection of finite dimensional spaces, then ker(f) = f-1(0) is a linear 
space of dimension r = dim(T)-dim(S), and for every w in T, the set f-1(w) is similar to a linear 
space of dimension r, except it has no specified origin.  I.e. if v is any solution of f(v) = w, then the 
correspondence x-->x+v, is a bijection from f-1(0) to f-1(w).  Hence the choice of v as "origin" in  
f-1(w) allows us to define a unique structure of linear space making f-1(w) isomorphic to f-1(0).  
Thus f-1(w) is a translate of an r - dimensional linear space. 
 In this way, f  "fibers" or "partitions" the space S into the disjoint union of the "affine" 
linear sets" f-1(w).  There is one fiber f-1(w) for each w in T, all of which are translates of the linear 
space ker(f) = f-1(0).  If f:S-->T is surjective and linear, and dimT = dimS - 1, then the fibers of f are 
all one dimensional, so f fibers S into a family of parallel lines, one line over each point of T.  If  
f:S-->T is surjective (and linear), but dimT = dimS - r with r > 0, then f fibers S into a family of 
parallel affine linear sets f-1(w) each of dimension r. 
 
The matrix of a linear map Rn-->Rm 
 If S, T are linear spaces of dimension n and m, and {v1,....,vn}, {w1,....,wm} are sets of 
vectors spanning S,T respectively, then for every v in S, and every w in T, the scalar coefficients ai, 
bj in the expressions v = ∑aivi, and w = ∑bjwj, are unique.  Then given these minimal spanning sets, 
a linear map f:S-->T determines and is determined by the "m by n matrix" [åij] of scalars where: f(vj) 
= ∑Si cijwi, for all j = 1,....,n.  If  S = T = Rn, we may take vi = wi = (0,....,0,1,0,....,0) = ei = the "ith 
unit vector", where the 1 occurs in the ith place. 
   
 If S is a linear space of dimension n and {v1,....,vn} is a minimal spanning set, we call 
{v1,....,vn} a basis for S.  Then there is a unique isomorphism S-->Rn that takes vi to ei, where the 
set of unit vectors {e1,....,en} is called the "standard" basis of Rn.  Conversely under any 
isomorphism S-->Rn, the vectors corresponding to the set {e1,....,en} form a basis for S.  Thus a 
basis for an n dimensional linear space S is equivalent to an isomorphism of S with Rn.  Since every 
linear space has a basis, after choosing one, a finite dimensional vector space can be regarded as 
essentially equal to some Rn. 
 
 In the context of the previous sentence, every linear map can be regarded as a map  
f:Rn-->Rm.  The matrix of such a map, with respect to the standard bases, is the m by n matrix 
whose jth column is the coordinate vector f(ej) in Rm.   
 If f:S-->T is any linear surjection of finite dimensional spaces, a careful choice of bases for 
S,T can greatly simplify the matrix of the corresponding map Rn-->Rm.  In fact there are bases for 
S,T such that under the corresponding isomorphisms, f is equivalent to a projection  
R(n-m)xRm-->Rm.  Thus up to linear isomorphism, every linear surjection is equivalent to the 
simplest example, a projection. 
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 This illustrates the geometry of a linear surjection as in the previous subsection.  I.e. a 
projection f:RnxRm-->Rm fibers the domain space RnxRm into the family of disjoint parallel affine 
spaces f-1(v) = Rnx{v}, with the affine space Rnx{v} lying over the vector v.  Since every linear 
surjection is equivalent to a projection, every linear surjection fibers its domain into a family of 
disjoint affine spaces linearly isomorphic to this family.  We will see that the implicit function 
theorem gives an analogous local statement for differentiable functions. 
 
The determinant of a linear map Rn-->Rn. 
 For each linear map f:Rn-->Rn there is an important associated number det(f) = det(cij) = the 
sum of the products ∑s(i) cis(i), where s ranges over all permutations of the integers (1,2,3....,n).  
det(f) is the oriented volume of the parallelepiped (i.e. block) spanned by the image of the ordered 
set of unit vectors f(e1),....,f(en).  Then f is invertible iff det(f) ± 0.  The intuition is that this block 
has non zero n dimensional volume iff the vectors f(e1),....,f(en) span Rn, iff f is surjective, iff f is 
invertible. 
 
Derivatives: Approximating non linear functions by linear ones. 
 Ordinary Euclidean space Rn is a linear space in which an absolute value is defined, say by 
the Euclidean "norm", |v| = (x12+....+xn2)1/2, where v = (x1,....,xn), hence also a distance is defined 
by dist(v,w) = |v-w|.  The set of points x such that |x-a| < r, is called the open ball of radius r 
centered at a.  An "open set" is any union of open balls, and an open neighborhood of the point a is 
an open set containing a.  If f:Rn-->Rm is any map, then f(x) has limit L as x approaches a, iff the 
real valued function |f(x)-L| has limit 0 as x approaches a. 
   
 In a linear space with such an absolute value or norm we can define differentiability as 
follows.  A function h is "tangent to zero" at a, if h(a) = 0 and the quotient |h(x)|/|x-a| has limit zero 
as x approaches a.  I.e. if "rise" over "run" approaches zero in all directions. In particular then h(x) 
approaches zero as x approaches a.  Two functions f,g are tangent at a, if the difference f-g is tangent 
to zero at a. 
   
 A function f defined on a nbhd of a, is differentiable at a if there is a linear function L such 
that L(v) is tangent to f(v+a)-f(a) at 0.  Then L = f'(a) is unique and is called the derivative of f at a.  
I.e. f has derivative L = f'(a) at a, iff the quotient |(f(x)-f(a)-L(x-a))|/|x-a| has  limit zero as x 
approaches a.  If f is itself linear, then f'(a)(v) = f(v), for all a.  I.e. then a-->f'(a) is a constant (linear 
map valued) function, with value f everywhere. 
 
Chain Rule 
 The most important property of derivatives is the chain rule for the derivative of a 
composite function.  If f is differentiable at a and g is differentiable at f(a), then gof is differentiable 
at a and (gof)'(a) = g'(f(a))of'(a).  I.e. the derivative of the composition, is the composition (as linear 
functions) of the derivatives.  Since the derivative of the identity map is the identity map, this says 
roughly "the derivative is a functor", i.e. it preserves compositions and identity maps.  
 As a corollary, if a differentiable function has a differentiable inverse, the derivative of the 
inverse function is the inverse linear function of the derivative.  I.e. If f-1 exists and is differentiable, 
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then (f-1)'(f(a)) = (f'(a))-1.  In particular, since a linear function can be invertible only if the domain 
and range have the same dimension, the same holds for a differentiable function.  E.g. a differentiable 
function f:R2-->R cannot have a differentiable inverse, because R^2 and R have different linear 
dimensions.  (Continuously invertible, non differentiable, functions also preserve dimension, but 
this is much harder to prove in general.  It is easy in low dimensions however.  Can you prove there 
is no continuously invertible function f:R2-->R?)  
 
Calculating derivatives 
 The usual definition of the derivative of a one variable function from R to R, agrees with the 
definition above, in the sense that if f'(a) is the usual derivative, i.e. if f'(a) is the limh-->0 (f(a+h)-
f(a))/h), then f(a+h)-f(a) is tangent at zero to the linear function f'(a).h of the variable h.  I.e. the 
usual derivative is the number occurring in the 1 by 1 matrix of the derivative thought of as a linear 
function.  There is an analogous way to compute the matrix of the derivative in general.   
 A function f:Rn-->Rm is made up of m component functions g1,....,gm, and if in the ith 
component function gi, we hold all but the jth variable constant, and define the real valued function 
h(t) of one variable by h(t) = gi(a1,....,aj+t,....,an), we call h'(0) = ∂gi/∂xj(a), the jth partial derivative 
of gi at a.  If f is differentiable at a, then all partials of f exist at a, and the matrix of the derivative L = 
f'(a) of f at a is the "Jacobian" matrix of partials [∂gi/∂xj(a)].   
 It is useful to have a criterion for existence of a derivative that does not appeal to the 
definition.  It is this: if all the partials of f exist not only at a but in a nbhd of a, and these partials are 
all continuous at a, then f is differentiable at a, and the derivative is given by the matrix of partials.  
We can thus check the invertibility of f'(a), by computing the determinant of this Jacobian matrix.  
 
Inverse function and implicit function theorems 
 The "inverse function theorem" is a criterion for f to have a local differentiable inverse as 
follows:  If f is differentiable on a neighborhood of a, and if the derivative f'(x) is a continuous 
function of x in that nbhd, (i.e. if the entries in the matrix of f'(x) are continuous functions of x), and 
if f'(a) is invertible, then f is differentiably invertible when restricted to some nbhd U of a.  I.e. then f 
maps some open nbhd U of a bijectively onto an open nbhd V = f(U) of f(a), and f-1 is defined and 
differentiable on V, and f-1(V) = U. 
  
 More generally, the implicit function theorem characterizes differentiable functions which 
are locally equivalent to projection maps, as follows.  If f is differentiable on a neighborhood of a in 
Rn with values in Rm, and if the derivative f'(x) is a continuous function of x, and if f'(a) is 
surjective, then on some nbhd U of a, f is differentiably isomorphic to a projection 
.   
 I.e. if f:Rn-->Rm is continuously differentiable near a with surjective derivative at a, then 
there are open sets U in Rn, W in Rn-m, V in Rm, with U a nbhd of a, V a nbhd of f(a), and a 
differentiable isomorphism h:U-->WxV, such that the composition  
foh-1:WxV-->V, is the projection map (x,y)-->y.  Then the parallel flat sets Wx{y} which fiber the 
rectangle WxV, are carried by h-1 into "parallel" curved sets which fiber the nbhd U of a.  The fiber 
passing through a, suitably restricted, is the graph of a differentiable function, hence the name of the 
theorem.   
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 I.e. one can take a smaller nbhd of a within U, of form XxY, with X in W, and the map  
XxY-->WxV of form (x,y)-->(x,f(x,y)).  Then the flat set Xx{f(a)} pulls back by h-1 to some subset 
G of XxY in which every point is determined by its "X-coordinate". I.e. given x in X, there is a 
unique point of form (x, f(a)), hence a unique point h-1(x,f(a)) in the set G = h-1(Xx{f(a)}).  Since 
on G, the Y coordinate of every point is determined by the X coordinate, and every x coordinate in 
X occurs, G is the graph of a function X-->Y.  This function is differentiable since it is a composite 
of differentiable functions: i.e. (projection) o (h-1) o (id,f(a)).  We are more interested in the simpler 
geometric interpretation than in the "implicit function" interpretation. 
 
Compactness 
 In proving many results, we will often need the important ideas of connectedness and 
compactness from point set topology.  In Euclidean space recall that an open set is a union of open 
balls.  Compactness is a replacement for finiteness as follows: a set Z is called compact if whenever 
Z is "covered by" a collection of open sets (i.e. Z is contained in the union of those open sets), then 
a finite number of those same open sets already cover Z.  A set is called "closed" if it is the 
complement of an open set.   
 A subset of Rn is compact if and only if it is closed and contained in some finite open ball, 
i.e. if and only if it is closed and "bounded".  It follows that the product of two compact sets of 
Euclidean space is compact.  
 If f is a continuous function, and Z a compact subset of its domain, then f(Z) is also 
compact.  Hence a real valued continuous function defined on a compact set Z assumes a global 
maximum there, namely the least upper bound of its values on Z.  Likewise it assumes a global 
minimum on Z.     
 If Z is a compact subset of Rn then any open cover {Uj} of Z has a "Lebesgue number".  I.e. 
given any collection of open sets {Uj} covering Z, there is a positive number r > 0, such that every 
open ball of radius r centered at any point of Z is wholly contained in some open set Uj of the given 
cover.  This number is the minimum of the continuous function assigning to each point p of Z the 
least upper bound of its distances from the outside of all the sets Uj, i.e. the least upper bound of all 
r > 0 such that the open ball of radius r about p is contained in some set Uj.  This function is 
positive valued since the sets Uj cover Z, hence it has a positive minimum.  
 A sequence contained in a compact set Z has a subsequence converging to a point of Z.  In 
Rn this property implies in turn that Z is closed and bounded hence compact. 
 
Connectedness 
 This is one of the most intuitive concepts in topology.  Ask anyone, mathematician or not, 
which set is connected, the interval [0,1], or the two point set {0,1}, and they will always get it 
correct.  Fortunately it is also one of the most important and powerful concepts.  A set Z is 
connected if whenever Z is contained in the union of two open sets A,B, then either some point of 
Z is in both A and B, or Z is entirely contained in one of the sets A or B.  I.e. you cannot separate a 
connected Z into two non empty disjoint parts AinZ and BinZ.  Either AinZ and BinZ meet, or one 
of them is empty. 
 The empty set is connected.  Any one point set is connected.  The only connected subsets 
of R are the intervals, either finite or infinite, open or closed, half open or half closed.  The image of 
a connected set under any continuous map is again connected.  Thus an integer valued continuous 
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function on an interval is constant.  If f is a continuous real valued function defined on an interval of 
R, the set of values of f is also an interval.  In calculus this is called the intermediate value theorem. 
 If f:S1-->R2 is a continuous injection from the circle to the plane, then R2 - f(S1) is a disjoint 
union of exactly two non empty connected open sets, the inside and the outside of the closed loop 
f(S1).  This, the "Jordan curve theorem", is famously hard to prove, but we will prove it easily 
when f is continuously differentiable. 


