VII. Symmetries and Quantum Mechanics

Wigner’s Theorem

One of the most powerful techniques for extracting consequences about a
physical system is to exploit the various symmetries exhibited by the sys-
tem. A physical system exhibits a symmetry if there is something you can
do to the system and after you're finished doing it, the system looks the
same as before you did it. Often times, one is able to obtain valuable in-
sights into an appropriate structure of a model Hamiltonian and Jor the form
of & solution through the symmetries of the physical system being modeled.
In addition, the presence of symmetries can sometimes be used to exclude
certain transitions leading to selection rules.

The postulates of quantum mechanics place very severe restrlctlons on the
nature of the possible operators which can represent the symmetry transfor-
mations. These restrictions are embodied in Wigner’'s theorem.

Consider two descriptions of the same physical system which are related
by the symmetry transformation. The fundamental property of a symmetry
is that the descriptions must produce the same physics. Thus, if the states
of the system are labeled in the two descriptions by primed and unprimed
vectors, then the spectral decomposition postulate and the basic symmetry
requirement dictate that

| <@l > _ [<¥l¢>F
<Py >< ¢ > <Pl ><plo>

The states in the two descriptions are related to each other by an operator
{7 so that

(1)

¢ >=Ulg >=|U¢> . (2)

However, this does not completely define the operator U since we can always
rescale U by a complex number Z, and still obtain the same physical state,
ie. U|¢ > and ZsU|¢ > represent the same physical state (same ray in the
Hilbert space). What Wigner showed was that if U is an operator satisfying

| <UlUs> > [ <yld>] 3)
<UP|UY ><U|Up > <l ><l¢ >




then one can always adjust the phases so that U is either a unitary operator
or an anti-unitary operator. The proof of this theorem is given in Appendix

A.
A unitary operator U is such that

< U|Up >=< $|UMV|g >=< 4| > (1)
for all states |¢ >, >, so that
Ut =uut =1 (5)
and is linear so that
Ulelg > +8ly >) = aUl¢ > +8Up > (6)

where «, 3 are arbitrary complex numbers. In that case,
|<Ugie>2 ] AR _ _l<plex]? ;
e <UdUEs — U< — <dlip=<digs o required.

An anti-unitary operator is such that

< UPlU¢ >=< Pl¢p >"=< ¢l > (7)

and is anti-linear so that
Ula|d > +8j¢ >) =a*Ulp > +8°U|yY > (8)

for arbitrary complex numbers «, 5. In that case,
|<U|Ué>2  _ _I<ol>>  _ _ |<wle>|? :
<U¢fU¢><U¢|U¢>__‘<w|¢><¢|¢> = Zilws<ags oS required. .
n our description of a symmetry, we have thus far focused on two dif-

ferent descriptions of the same physical system. That is, we have considered
two different observers related to each other by a symmetry transformation.
This perspective is referred to as the passive view. A completely equivalent
alternative is to focus on a single observer and envision acting on the physical
system by the symmetry operation. This is referred to as the active view.
The two points of view are complimentary to each other and either can be
employed. For example, if the physics is invariant under rotations, one can
either consider rotating the system by some angle about some direction or by
using a new coordinate system (observer) rotated with respect to the original
coordinates by the equal but opposite angle about the same direction. Either
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viewpoint corresponds to a symmetry operation and in both cases one gets
the same results as in the original description of any physical measurement.

We now study the consequences of requiring that the physics be invariant
under a particular set of coordinate transformations which correspond to
translations in space and time and spatial rotations. Consider two inertial
observers who label the same space-time point by (7, ¢) and (¥',t'). These
observers will be referred to as O and O’ respectively.

Space Translation Symmetry:

Spatial translation invariance dictates that the physics does not change if an
experiment is performed at two different points in space or equivalently if the
2 observers are related by a spatial translation @. Let me slightly elaborate.
If you build any kind of apparatus to do any kind of experiment and then go
ahead and build the same apparatus to do the same kind of experiment with
similar things but put them here instead of there, i.e. merely translated from
one place to another in space, then if the system. is space translation invariant,
the same thing will happen in the translated experiment as would happen
in the original experiment. It is necessary in defining this idea to take into
account moving everything that might have an influence on the experiment.
Note that @ is the same for all points. That is, the entire system is translated
by the same uniform amount. Under the space translation, the coordinates
of the 2 inertial observers are related by

T, = Zi+a
t = t. (9)

There are 3 parameters, &, which characterize the spatial translation. (One
independent translation for each of the 3 spatial directions).

The translation transformation in space induces a transformation on the
Hilbert space and there is an associated operator U(a) which acts on the
Hilbert space of states. Since the square of a translation is again a translation,
we have that :

Ula) =U*(a/2) (10)

Wigner’s theorem asserts that each of the U(a) is either a unitary or anti-
unitary operator. But since square of either a unitary or anti-unitary opera-
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tor is a unitary operator, we conclude that U{a) must be a unitary operator.
Note that this same type of argument can be employed to show that the
quantum mechanical operator representing any continuous symmetry
transformation is unitary.

Let us now consider the case when the parameters characterizing the
translation transformation differ only infinitesimally from no translation so
that

Q; == € , |61| << 1 (11)
with the ¢; being 3 real parameters characterizing the infinitesimal space
translations.

Since the transformation differs only infinitesimally from no transforma-
tion, it follows that the unitary operator U(¢) differs only infinitesimally from
the identity operator and thus can be written as

P
Ule)=1- iei# (12)
Imposing the unitarity of U and retaining terms to first order in the small
parameters gives

I = UNUe)
t _
= [1+z'e%][fmm%

= I- %Ei(Pfé - P;,T) (13)

Since ¢; are independent parameters, it follows that
P =P, (14)

The 3 hermitian operators F; are the called the generators of translations.
Now consider 2 successive such infinitesimal translations:

V(e = I - %QEiPi — U(2€) (15)

Writing €; = % with the idea that N — oo, then

()12 = U

2a

) (16)



Continue to compound the infinitesimal transformations so that

: Oy o a,
Jim U = lim (V) = Ula) (1
Thus the unitary operator corresponding to the finite spatial translation is

Ule) = lim [U(=)]"

N—oo N
1 Gy
= lim [[ - =R
Bl
= e rub (18)

Invariance under spatial translations dictates that

W'(7) = (7 — a) (19)
or
<Y >=<7—ay > (20)
Using o
@ >=e 7y > (21)
along with the Taylor expansion
<F—dl=e <7 (22)
gives o
< Fle 7Py >= 7V < Fly > (23)
or since |¢ > is arbitrary that
< ’F‘Ie‘%a'ﬁ — Y ] (24)

For infinitesimal @ this reads

—%a‘-<ﬂﬁ=—a-va‘| (25)

Consequently we recognize that the hermitian operator P generating space
translations has the coordinate space representation

<ﬂﬁx%V<ﬂ (26)
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and can be identified as the momentum operator.

It follows from Eq. (26) that
1P, Pl =0 (27)
An example

Let us see how the presence of a translation symmetry can facilitate solving
for a Hamiltonian eigenfunction. Suppose we have a system which is invari-
ant under translations along a particular direction, which we choose to be the
z direction. Invariance under such translations then dictates that the Hamil-
tonian cannot depend on the z coordinate operator so the time independent
Hamiltonian has the dependence H = H(z,¥y, Ps, Py, P=). We shall employ
the z translation symmetry to obtain the z dependence of a non-degenerate
Hamiltonian eigenfunction.

Since p, commutes with z,¥y, Pz, 2y, Pz and H is 111dependent of z it follows
that [H, p,] = 0.

Let E be a non-degenerate H eigenvalue with eigenfunction 4(r):

H(7) = E¢(7) (28)
It follows that
0= [H,p:¥(7) (29)
so that
#(p4(7) = pe1(7) = B(p.(7)) (30)

Thus p,y(F) =2 —E’@ is an H eigenstate with eigenvalue E.

Since the eigenvalue E is non-degenerate, it follows that the .eigenfunction
%M&fl corresponds to the same state as the eigenfunction (7). Thus these
two functions are proportional to each other:

A 9%(T)



Solving this p, eigenvalue equation yields

Y(F) = e*f(z,y) (32)

with —o0o < k, < co.

Time Translation Symmetry:

If the physics does not change if the experiment is performed at a differ-
ent time so that the 2 observers are related by a time translation b, then
the system is said to be time translation invariant. Note that it is the entire
system which is translated by the same uniform temporal amount. Under
the time translation, the coordinates of the 2 inertial observers are related
by

!

t = t+b (33)

so that there is 1 parameter, b, characterizing the time translation.

The time translation transformation induces a transformation on the Hilbert
space and there is an associated operator U(b) which acts on the Hilbert
space of states. Since any time translation can be achieved by compounding
infinitesimal time transformations, we know that U(b) is a unitary operator.

Let us now consider the case when the parameter characterizing the time
translation transformation differ only infinitesimally from no translation so
that

b=0, 16l <<1 (34)

with @ is 1 real parameter characterizing the infinitesimal time translations.

Since the transformation differs only infinitesimally from no transforma-
tion, it follows that the unitary operator U(3) differs only infinitesimally
from the identity operator and thus can be written as

UB) =1+ z‘ﬁg— (35)

Imposing the unitarity of U and retaining terms to first order in the small
parameters gives

I = UNB)U(B)
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ot H
= [I—'fﬁ-h_][f‘f‘iﬁg]
= I+ %ﬁ(H —gh (36)
Since 3 is an independent parameter, it follows that
ot =H (37)

The hermitian operators H is the called the generators of translations.
For infinitesimal time translations, b= 3,

U(g) =1+ +8H (38)
Consider 2 such infinitesimal translations:
U@ =1+ ﬁ2ﬁH = U(206) (39)

Writing § = % with the idea that N — oo, then

b o 2b
U=V (40)
Continue to compound the infinitesimal transformations so that
, bon o by
Jim UG = lim U@V ) = U (41

Thus the unitary operator corresponding to the finite time translation is

Ue) = Jm UG

N—coo
, ib N
= gl gt
= et (42)

Now consider an observer @ and the time translated by b observer (.
They describe the state of the system by |i > and |9’ > respectively, where

[ >=er My > (43)
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with H = HT the generator of time translations. Here we have been employ-
ing the passive description in which two observers related by a symmetry
transformation are describing the same physics. Alternatively, we could em-
ploy the active view in which there is a single observer, but the system itself
undergoes the symmetry transformation. Using this viewpoint for the case
of time translations, then |¢' >= |¢(¢) > is the state which has evolved from
the state | >= |¢(0) > after the time interval ¢ = —b has passed and the
states are related as

() >= e |y (0) > (44)
It follows that q |
ih—|9(t) >= H|y(t) > (45)

and we can identify the generator of time translations, H, as the Hamiltonian
of the system.

Schrédinger and Heisenberg Representations

Thus far in describing a closed physical system, we have employed a for-
malism in which all operators are time independent while the physical states
have time dependence governed by the Schrodinger equation

z‘h%hb(t) S= Hip(t) > . (46)

This dynamical description is referred to as the Schrodinger representation or
picture. Such a description, however, is not unique. One could alternatively
describe the closed system using time independent states and time dependent
operators. Such a description is referred to as the Heisenberg representation
or picture. It is related to the Schriodinger representation by performing a
unitary transformation.

Let |1(t) >s and As denote a physical state vector (i.e solution to the
time dependent Schrodinger equation) and operator in the Schrédinger repre-
sentation. Now define the corresponding state and operator in the Heisenberg
representation by

[ = e p(t) >s (47)
Ay (t) = enHt AgemaHt (48)

9



where H = H' is the hermitian Hamiiltonian operator. Note that
H = Hg = Hy. The operator

is clearly unitary since
U (E) = Ul(t) = e# 7. (50)
The scalar product of two vectors in the Heisenberg representation

o <Ylg>a= 5 <P)e FHATP(t) >5= 5 <P(t)p(t) >s  (51)

is equal to the scalar product in the Schridinger representation. Moreover
since

g <PAzld >n = s < w(t)e i er T Age # R T (1) >
s < P{t)|Aslo(t) >s, (52)
we see that matrix elements of the corresponding operators in the two pic-

tures are also identical. The operators Ay(t) and Ag are unitarily equivalent.
Now consider

d _ d, im —iHt
gArl) = (e AseT

— ;; ‘Ht(HAS_ASH) - Ht
- %(HAH(t)—AH(t)H)

= A, An(®) (53)

which is the Heisenberg equation of motion.
On the other hand,

d d. s
Zo>n = E[efﬁtlw(ﬂ >s]

— %e%ﬂtmw(t) >g ekt W’()
%e%Ht[H|¢( ) >s —zh Iw(t) >s]
0
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as a consequence of the Schridinger equation. Thus the state vectors in
the Heisenberg representation are time independent while the operators have
time dependence given by the Heisenberg equation of motion. Further note
that Ax{0) = As and |[¢(0) >s= |[¢ >p so that the two representations
coincide at ¢t = 0.

Note that since it is unitary operator which connects the Schrodinger and
Heisenberg pictures, the Heisenberg operators also satisfy canonical commu-
tation relations at each time #:

[z (t), pjm (t)] = iP5y
]

[T (£), z3(t)] = 0 = [pin(t), pia ()] (55)
Further note that for the Hamiltonian
7
H= 5m + V(7) (56)

the Heisenberg equations of motion for the coordinate and momentum oper-
ators reduce to

dmz(t) = Tlnpm(t)
dpim(t) _ OV(rx(1))
dt - a:L‘iH(t) (57)

which have the same structure as the classical equations of motion.
Recall the position operator eigenvalue problem which in the Schrédinger
representation takes the form

FolF! >s= 7|7 > (58)

Here |7’ >3 is time independent ket-vector. Now define the position operator
in Heisenberg representation as

o () = enHifge= i lt (59)
which has the eigenvalue equation (c.f. Eq. (58))

Frt) (it 7! >g) = 7' (enBF ! >g) (60)

11



Thus we can define the Heisenberg representation coordinate state eigenvec-
tor at time t as

77t > = eF 7 > (61)

P + r [ + —_— ro + 6

Note that the label ¢ appearing in the |7';¢ >x is there to indicate that the
vector |7 /;% >y is an eigenstate of 7y (t) at time t with eigenvalue 7', On
the other hand, it is not an eigenstate of 7y (to) if 1o # ¢

We also have that

< fitplt) = < ﬂe“ﬁthe%Htpe—%Ht
= << f’]pe—%Ht

= by et
]
h
= V<At (63)

As an example, consider the 1-dimensional simple harmonic oscillator
with Hamiltonian

PPl s, t 1
H = % -+ —z—mwom = hwg(a a+ 5) (64)

Using the Schrédinger picture, the time evolution of the state vector is ob-
tained as the solution to the Schridinger equation

in I y(t) >s= HID() =5 (63
as o .
[1(2) >s= e F (0} >5= 3 cae FEn > (66)
n=0

where in obtaining the second equality, we have expanded the state vec-
tor |(0) >s in terms of the complete set of H eigenstates as |¢(0) >g=
® caln > where |n > is an H eigenstate satisfying H In >= E,|n>.
On the other hand, in the Heisenberg picture, we have

[ > = eb () >s= [$(0) >s (67)
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The annihilation operator in the Heisenberg picture is

i _i i i
ag(t) = eiftagew it = exfllge | g5=a

so that ag(0) = ag = a. It follows that

dag(t) boip —iHt
——2 = —erH agle7kr
di h [ al _
—iwge%mae_%m
= —iwoaH(t)

Integrating this equation gives

ay(t) = e lay(0) = e '

(68)

(69)

(70)

This result can also be secured by integrating the Heisenberg equation of

motion
LAV 0)
_ %G%Ht[Hja]e—%Ht
= —iwpag(t)
yielding
ay(t) = e ™'

Taking the hermitian conjugate gives
airq(t) = glwotgt

It then follows that

onlt) = |5 (an(t) + al(t)

= t)+ —p si t
x cos(wgt) + o o sin(wpt)

pilt) = "2 a(t) ~ aly (1)
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= p cos(wpt) — muw,x sinwot) (75)

In obtaining this result, we used that

— h f Ty
r = zmwol\uﬂ-a)
1 [hmwy
p = Sy—5 (e—al) (76)

Space Rotations

Isotropy of space dictates that the physics does not change if the experi-
ment is performed by two different observers who are related by a spatial
rotation through an angle 8 in the direction §. Note that § = 66 is the same
for all points. That is, the entire system is rotated by the same uniform
amount. Consider two observers who are related by a rotation and have a
common origin so that we can write the relation between the two inertial
observers as '

-

z; = Ry (0)z; (77)
with R;; real. A rotation has the property that it leaves the distance between
2 points unchanged. Thus

7! 2 = ’!:Q = misz = T;T; (78)
or
Rijx; Rty = Tj%5 = 50T 5Tk ' (79)

and since this must hold for all z;, that
Rij Ry = 05 (80)

Introducing the 3 x 3 matrix A whose 7t component is Ry;, this matrix
satisfies
BRT=RTR=1 (81)

where the superscript 7" denotes transposition. Thus the matrix R is a real
orthogonal matrix and
R'=RT (82)
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or in components
(B™Y);; = Ry (83)

It follows that matrix R has 3 independent parameters which are used to
characterize the rotation. These can be taken to be the 3 rotation angles )
or the 3 Euler angles. We shall use the angles §; so that B = R(ﬁ) The
explicit dependence of R(ET) on § can be obtained using the simple geometry
displayed in Appendix B.

Let us now consider the case when the parameters characterizing the ro-
tation differ only infinitesimally from no rotation so that

Rij =8y +wy , |wy| <<1 (84)

with w;; real parameters. The orthogonality of R, RT = R™', restricts the
infinitesimal parameters w;;. Working to first order in the w,

(R7)y = 0 — wyg | (85)
while
(RT)ij = 0y + wji. (86)
Thus |
RT = ! = wy; = —wy; (antisymmetric) (87)

and there are only 3 independent parameters characterizing the infinitesimal
rotations.

The rotation in space induces transformations on the Hilbert space and
there is an associated operator U(1 + w) which acts on the Hilbert space
of states. Since any rotation can be achieved by compounding infinitesimal
rotations, we know that U(1+w) is a unitary operator. For rotations differing
only infinitesimally from no rotation, it follows that the unitary operator
U(1 +w) differs only infinitesimally from the identity operator and thus can
be written as

T Ji
Since w;; = —wj;, we can take Ji; = —Jj; with no loss of generality. Imposing

the unitarity of U and retaining terms to first order in the small parameters
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gives

I = U1+w)U(l+w)

: i .
i J i Ji
= [I- iwz'j‘}f][f + 5w
i
= I+l — 5 (89)
Since w;j = —wj; are independent parameters, it follows that
I = Ji (90)
First consider a rotation by an angle 8 about the 2 axis so that
cos —sinf 0
R(02)=| sinf cosf O (91)
0 01
For infinitesimal 6, this takes the form R;; = 0;; +wy;(02) with
0 -1 0
w@z)=011 00 (92)
0 00
ie. W — —9, Wy = a.
Note that since w;; = —wj;, we can always write wj; = —€;10k. For infinites-
imal rotations about the z axis, 8y = 63 so that only wiz = —way = —8 are
NON-ZEr0.
Thus for an infinitesimal rotation by 8 about the Z-axis,
U(l + W(Gf)) = [+ ;—nwz‘jj,;j
= T + %wlgjlg
= I— 207, (93)
h
Defining .
J = (Jaz, J31, J12) (94)
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that is,

1
Ji = Eeijkjjk = -]ij = Eiijk (95)
it follows that :

Employing the same reasoning as in the case of translations, we can com-
pound the infinitesimal rotations about the Z-axis to construct a finite rota-
tion about this axis of angle # which is represented on the Hilbert space by
the unitary operator

U(R(§2)) = e~ =% (97)
Calling the rotation axis Z was an arbitrary choice and we could just as well

have labeled the direction 4. It would then follow that the rotation of angle
# about the direction # is represented by the unitary operator

U(R(BY) = e #77 (98)

The hermitian operators J; generate spatial rotations. Thus under a rotation
by angle 8 in the direction 0, the rotated observer describes the state |1 >
as the state

' >=U(RO)|o >= e F ¥y > (99)

Since < 1] J;|4 > transforms as a vector under rotations (i.e. it transforms
in the same way as the spatial coordinates) it follows that

<@l >= Rax(0) < ¢l el > (100)
Using that .
' >=U(R(O))|y > (101)
it follows that
< YU (RO J;U(RENI >= Rin(0) < 9| Jxle > (102)

and since the state |1¢b > is arbitrary, that

— —

U~ (R(6));U(R()) = Ryx(0) Jx (103)
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or

exl? 1o %78 = Ry(6)Jy (104)
Now consider an infinitesimal rotation so that # — 80 with |660] << L.
We can then Taylor expand e —EI0 — 1 - “Jidé?i and R;x(66) = 05 + wyi =
81 — €51:60; . Substituting into the above then gives {retaining terms through
linear in 66)

%592-[(12., T} = —86ie a5 Tk (105)

or, since the 86; are independent, that

[Ji, Jj] = iﬁéijkjk (106)

which is the angular momentum algebra.
In an analogous fashion, we have that

< ¢/|P;|y >= Ry(6) < ¥| Pl > (107)
leading to the commutation relations
[Ji, P;) = iheijeFe (108)

Note that one realization of these commutation relations is obtained using
the differential operators

hoo
Ji = €inTi— B L; ( orbital angular momentum) (109)
k

We thus secure the algebra for a space and time translation and rotation-
ally invariant system

[Ji’ H] =0
[P‘i’ H] =0
[Pﬂ R’.’] = 0
[J'n Jg] = i€indk
One Hamiltonian satisfying this alrfebra, is a free particle: H = %; another

is the 2-body system: H = 2m + V(i - )

1 2my
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Recall that in the Heisenberg picture, an operator A(t) has a time de-
pendence (here we assume that the operator A is time independent in the
Schrodinger picture) given by the Heisenberg equation of motion

dA(t
—-iﬁ«ﬁ = [H, A(t)] (111}
dt
Tt follows that the constants of motion are those operators which commute
with H. Thus for a system invariant under space and time translation and
rotations, the momentum, P, and the angular momentum, J, are constants
of the motion. '

Time translation invariance < H constant of motion < energy conserved

Space translation invariance < F constant of motion < momentum

)

conserved

Space rotation invariance ¢ J constant of motion < angular mo-
mentum conserved.

Since the constants of the motion commute with H, they can be simulta-
neously diagonalized along with H. For those operators which also mutually
commute, they can be used as (part of) the CSCO. As such their eigenvalues
can be employed in the labeling for a basis of the state space.
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Appendix A: Proof of Wigner’s Theorem

The fundamental requirement on the operator U is that

| <UpU>] | <dlp>]
< Up|Uy >< UdlUd > < |ip >< ¢lop >

First, by rescaling |Uy) >— %}%’”—W 1 >, this fundamental requirement
takes the form
L <UPlU > | =] <9[d>| (113)

Now introduce a complete orthonormal basis {|¢ >} satisfying
< Bl >= 0u (114)
The fundamental requirement gives
| <Uge|Udy > | = < ulr >1=0, k#I (115)

and
< U¢k|U¢k >=< qbk\qf’k >=1 (116)

Taken together these reduce to
<U|U >= b (117)

so the {|Ug¢y >} also form a complete orthonormal set of states. An arbitrary
ket |¢ > can be expanded in terms of the {|¢x >} as

o >=_ x| > ' (118)

with 1 =< ¢x|tp >, while the state Ul >= |Uy > can be expanded in
terms of the {|Udy >} as

Ul >= U >= > op|Udy > (119)
k

with ¥}, =< U¢e|U% >. The fundamental requirement then dictates that
[kl = [l (120)
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Let |¢1 > be a basis state which has a non-trivial coefficient in the ex-
pansion of [¢b > and consider the states [¢1 > +ldp >, with & = 2,3, ....
Expanding the states [U(¢; + ¢x) > in terms of the {|{U¢; >} gives

U (¢1+ ¢) >= D om|Udy > (121)
z

with ay, =< U@|U(p1 + ¢x) > , k = 2,3,.... Using the fundamental
requirement that

| < Ud|U(1+ ) >| = | < dl(dr+ ) > |
= | < i >+ < x> |
= |én +5uc| (122)

it follows that |aw| = |61 + 8! , k =2,3,.., so that only the [ values of
1 and k can appear in the expansion of U(|¢y > +|¢x >) in terms of the

{|{U¢y >} giving
|U(¢1 + di) >= Uy > +Be|Udy > (123)

where we have defined o = a1y and S = ok Since |ag| = G| = 1, it
follows that ay , Ok are pure phases.
Now introduce U’ by defining

U’|¢>1 > = |U’¢)1 >= |U¢>1 >
U'|Q§k > = lU'qbk >= %IU@& >

U (¢4 ) > = a%lU(¢1+¢k)>

(124)
which specifies the phases. So doing Eq. (123) takes the form
U (s + ¢x) >=|U'¢s > +|U'¢s > (125)
Now recall U" by U so that
U(¢1 + ) >=|Ur > +{Udy > (126)
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Now consider

| < Ul + ¢)lUp >| = ‘Z¢;<U(¢1+¢k)|U¢z>|
[
= Y u< Ui+ < Ugp)lUdhy > |
i

= > (0u + dw)]
I
= |+l k=23 .. (127)
and

| <+l > = |D_% < é1+ Pl > |
1

= |Z¢t(5u + 0|
1
= Jhi+dl , E=2,3, ... (128)

As a consequence of the fundamental requirement, | < U(¢1 + ¢x)|Uy > | =
| < ¢1 + dilth > |, we thus secure

[t -l = [y + 9 k=23, (129)
Recall that we already know that

il = 14| (130)
Thus writing

P = |1,b;|ei“’"9(¢‘)
W, = [pyjeteret) (131)

it follows that

I’l/)i + ’l/}u = l|¢1l6iarg(¢i) + ‘,]’bk|eia'rg(1’b;c)|
I -

= J([05] + [W}lcos?(arg(wy) — arg(w)) + 4 [2sin2(arg () — arg(y}))

= otl? + [l + 20 [l cos(arg (i) — arg(d))
= /Wl? + 19ul? + 20|l cos(arg () — arg($h))
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Similarly

|1 + il = \/IT//1|2 + 9|2 4 2|91 ||| cos(arg(sbx) — arg(tn))
Application of Eq. (129) then gives

cos{arg(yy) — arg(yy)) = cos(arg(e) — arg(yr))
or
arg(¥y) — arg()) = £(arg(¥r) — arg(ir))
Now consider
A e
9 T e
_ 1%l iargtup-arewi)
|4
_ Hb_k‘_e:l:i(arg(m)—mg(%))

|91

%z{(g)*}

or

(133)

(134)

(135)

(136)

(137)

Focus on the two possibilities in turn. First of all, we are free to choose the
overall phase of ¢ > and {U% > so that ¥} = 1, is real. So doing, we find

for the two alternatives:
(i) ¥ =
In this case

Ul >= Uy >=>_¢|[Udy >=D_hU|¢y >
! !

so that
US> il >=Y_ 0l >
i !

(i) 9 = ¥/
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It then follows that

Ul >= |Up >=>_ wi|U¢ >=> Ul > (140)
1 !

and thus
U il >= 3 ¢iUlg > (141)
l !

Consider the two alternatives in more detail:
(i)
<UxlU¢> = <UY_ xaxbelUD_ i >

TS >
= ;;Z’% < U(Jb;\U(ﬁz >
= EXZTP&
= <k x|y > (142)

while

Ulalx > +81v >) = UQ_(ox + B%w)idn >)

P
= oUS xulte > +BU Y vildr >
% %
= alU|x > +0Ujy > (143)

so that U is a linear operator. Combining the two conditions, it follows that
alternative (i) leads to U being a unitary operator.

(if)
<UxlUyp> = < UZXk¢k1U2¢I¢t >
k I
= <> XUl D 9iUd >
k l
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= > et < Ug|Ugy >
kI

= > xti
P

= <¢Ylx>
= <xlv> (144)

while
Ulalx > +8lw >) = U (axw + Bvi)|de >)

k
= Q*szk|¢k > +6*Uzwki¢k =
k k
= a'Ulx>+68Ulp > (145)

so that U is an anti-linear operator. Combining the two conditions, it follows
that alternative (ii) leads to U being an anti-unitary operator.
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Appendix B: Rotation matrix

2

From the figure, it follows that
7' =0Q+QF (146)
Since 7= OP and 7/ = OF' are related by a rotation, we know that

[OP| = [OF| (147)
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Looking down the § axis, we have using |@P| = |QP|

Ny A=
s aplap |eses ap AP |l
= FALS
that ) Q‘ F
QP = QPcost + 6 x QPsind (148)
Thus we can write
Po= 00+QP
= OQ + QPcosf + 0 x QPsin (149)
Then using that -
oQ=(r-6)0 (150)
so that .
QP =7—0Q@=7—(F-9)f (151)
we secure
Flo= (F-0)8 + (Feos@ — (7 9:)61005@)
+ (6 x Fsind — (- 0)0 x gsind)
; = fcosd + (7 8)8(1 — cost) + 0 x Tsind (152)
In terms of the components, this reads
z; =|d;c080 4+ 0:0;(1 — cosf) + eikjéksmﬁ] T (153)
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from which we identify

—

Ry;(0) = dijcost + 0,0;(1 — cosf) + eikjéksinﬁ

(154)

Consider the special case where |8;] << 1 which corresponds to an in-
finitesimal rotation about the § axis. Retaining terms through linear in §; so

that we can approximate cosf ~ 1 and sinf ~ ¢, we find

-

Rij(8) = b5 -+ Beirs0h

Defining

—

4. tij = ifajkjék
so that
(t)ij = e
Note that (tx); = —(tk)s. Explicitly,

00 0
t1= 0 0 —i Etm
0 i
00 4]
= 00 0|=¢t
| —i 0 0
0 —t 0]
t3= 7 00 Etz
(0 0 0]

One can explicitly check that
[ts, 5] = Teijntn
which also follows since the €;; satisly the Jacobi identity
[[£6, 23] ton] + [t Bal, 5] + [Ema ta] 251 = 0

so that
€ijk€kmn T EmikEhjn T EimkChin = 0
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(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)



Alternatively, we can define

—

wij (8) = Bein; B = —w;s(0) (164)

so that for infinitesimal rotations

—

Riy(0) = 8 + wiy(0) (165)

Using the t; matrices, we can rewrite R((;) is a particularly compact form
for finite rotations. To do this, introduce the combination

Nij = gi(tk)ijék = €ik:jék (166)
so that
( j)ij = 0:0; — &
(N4)1;j = *“%‘2
N%y = —(N%y
(N*™)y = (-1)"'(N?%)y 5 n>1
(N*)y = (-1'Ny ; n20 (167)

Now consider

() = i

1
—I

_ 2n+1 2n41y = ng ar2n
= W+ o +1) Gy + X (v

53 > 92n+1 -1 nNi' o - 9272, n+1 NZ

7 + Z 2 + 1 ) ( ) 3 nX=:1 ( ) ) ( ) ( )
-1 oo

— M 92n+1 N2 z

N2 ey %
= i + Ny smﬁ (N?);;(cos — 1) (168)

Recall that for finite rotations,

—

Ri;(8) = bic080 + 91;63;,;(1 — costl) + EikjékSing
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= &ijcos0 + (8:0; — 8i5)(1 — cost) + 6;;(1 — cosf) + Ny;sind

8ij + (N?)i5(1 — cosf) + Ny;sind

(eaN)ij

(e—ie.t)ij (169)

so that under a rotation of angle & about the direction 0

- -

z) = Ry (B)z; = (e7%%)y2; (170)

with
(te)iy = t€ins (171)

The ¢ form a matrix representation of the angular momentum algebra. Ex-
plicitly we can represent the operator Ji, by the matrix

Jp = Bt (172)
Thus the commutation relations
[ti, t5] = eumte (173)
translates to the angular momentum operator algebra

[Ji, JJ] = ‘ihﬁijk.]k (174)
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