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Introduction to algebraic geometry: some fundamental problems, and connections between 
algebra and topology 
 
Basic Questions: 
What do solution sets of polynomial equations "look like"? 
a. Are the solution sets empty or non empty?  
b. If there are solutions, when are there infinitely many? 
c. When can we parametrize the infinite solution set? 
d. When are there a finite number of solutions, and then how many are there?  
 
 Since one application of algebraic geometry of interest to many of us, is to number 
theory, we look at a few examples of how geometry, as well as topology and analysis can impact 
number theory.  If f is a polynomial in one or more variables, with integral or rational 
coefficients, we can look for integral, rational, real, or complex solutions of f(X) = 0.  The 
complex solution set has a lot of classical geometry, for instance it is a CW complex and usually 
a complex manifold, while the set of integral or rational solutions belong more to number theory.  
The beautiful phenomenon is that there are relations between these different sets of solutions.  
E.g. the geometry of the set of complex solutions can affect the nature of the rational solutions.  
Here is a simple but important example.   
 
Rational parametrizations: 
 Recall that in linear algebra we can always parametrize the solutions of a system of linear 
equations, i.e. there is a linear map from a linear parameter space onto the set of solutions, so that 
any choice of parameter yields a solution of the system of equations.  Suppose we could do that 
for the solutions of a polynomial equation.  I.e. suppose f(X,Y) has rational coefficients and there 
are non constant rational functions x(t), y(t) with rational coefficients, such that for all t, 
f(x(t),y(t)) = 0.  Then we could produce as many rational solutions of f(X,Y) = 0 as we like, since 
for any rational value of t, then (x(t),y(t)) is a rational solution of f(X,Y) = 0.  It turns out this 
sort of parametrization is usually not possible for purely topological reasons. 
   I.e. for each irreducible polynomial f(X,Y), the associated complex solutions of {f(X,Y) 
= 0} form a topological space which is a complex one manifold except at a finite set of points.  
One can then modify this space, by compactifying it with the addition of a finite number of 
points, then desingularize it by doing a simple surgery at another finite set of points, and obtain a 
complex one manifold called the associated Riemann surface of the given polynomial.  The 
assignment of a Riemann surface to an irreducible plane curve is a "functor", i.e. it is natural in 
the sense that a rational map between two curves induces a holomorphic map of their Riemann 
surfaces.  Hence a rational parametrization of a curve f(X,Y) = 0 over Q, which is a rational map 
from the rational line Q to the curve {f=0}, yields also a rational map from C to the complex 
points of f = 0, and a holomorphic map from the Riemann surface of Q to the Riemann surface of 
{f=0}.  Now the Riemann surface of Q is the one point compactification of C, namely the 
Riemann sphere.   
 So a rational parametrization of {f=0} yields a surjective holomorphic map from the 
Riemann sphere to the Riemann surface of {f=0}, which is some compact topological surface, 
with a complex structure.  Now a surjective holomorphic map allows us to pull back non zero 
differential forms from the target, to non zero differential forms on the source, but the Riemann 
sphere has no nonzero differential forms.  So this holomorphic map cannot exist if the Riemann 
surface of {f=0} has any non zero holomorphic forms.  The existence of such forms on a 



Riemann surface is equivalent to the Euler characteristic çtop being ≤ 0, so a rational 
parametrization cannot exist for a curve whose Riemann surface is a compact surface of genus g 
= 1 - (1/2)çtop ≥ 1.   
 Intuitively, a surface is a doughnut possibly with holes, the genus is the number of holes, 
and this number can be seen from a model of the curve made from lines.  I.e. the genus, being an 
integer, is invariant under deformation, so to compute it we may assume our curve is a union of 
lines.  A triangle obviously has one hole hence we claim a "non singular" curve of degree three 
has genus one, whereas a union of 4 lines has three holes, hence a non singular curve of degree 4 
has genus 3, etc.  Thus if the degree of the curve is ≥ 3, and there are no singular points of either 
the complex curve or its projectivization (compactification), then the genus is ≥ 1, so there can 
be no rational parametrization. 
 We can compute the genus without using this deformation argument, by projecting our 
surface onto the complex x - axis in the x,y plane and computing the branching behavior.  For 
example the cubic curve y2 = x(x-1)(x+1) projects 2:1 onto the x axis, branched over the three 
points x = 0,1,-1.  I.e. over each of these three points, there is only one preimage point instead of 
two.  This projection induces a holomorphic map of the associated Riemann surfaces as before.   
 The (compact) Riemann surface of the x axis is the one point compactification of C, 
namely the Riemann sphere, and the Riemann surface of the curve y2 = x(x-1)(x+1) is obtained 
by adding either one or two points over the point at infinity on the Riemann sphere.  If it were 
the case that we add two points then neither is a branch point, but it follows from Hurwitz’ 
formula that such a map of compact surfaces must have an even number of branch points, so we 
in fact must add one point at infinity.   
 This gives genus one for the curve y2 = x(x-1)(x+1) as follows.  Recall that the Euler 
characteristic of a compact surface is equal to V-E+F, where V is the number of vertices, E the 
number of edges, and F the number of faces in a triangulation of the surface.  If we triangulate 
the Riemann sphere into small triangles and make sure each branch point is a vertex, then a 
branched 2:1 cover pulls back each triangle on the sphere to two triangles on the curve y2 = x(x-
1)(x+1), and each edge to two edges, and each vertex either to two vertices, or only one if the 
vertex is a branch point.   
 Thus, if V,E,F are the numbers associated to our triangulation of the sphere, then the 
Euler characteristic of the Riemann surface of the curve y2 = x(x-1)(x+1), equals (2V-b) - 2E + 
2F = 2(V-E+F) - b.  Since for the sphere V-E+F = 2, this gives 0 for the Euler characteristic of 
the curve y2 = x(x-1)(x+1), which thus has genus 1.   
 The computation shows why there is always an even number of branch points for such a 
map as well, since the branch order is the difference between the Euler characteristic of the 
source, and a multiple of the Euler characteristic of the target, and the difference of these even 
numbers must be even. 
 Notice in this calculation that we are using a map from our curve onto a sphere to prove 
there can be no map from a sphere onto our curve.  Given that parametrization maps do not often 
exist, the existence of these maps in the other direction is a fundamental tool for studying 
algebraic sets.  I.e. we will show fairly early that there are always "finite" maps from any affine 
algebraic set of dimension n onto the affine space kn of dimension n, and eventually show that 
rational maps in the other direction, i.e. from affine space onto our algebraic set, exist only in 
special cases. 
 Guided by this geometric, topological, and analytical reasoning, we may conjecture that a 
plane curve of degree ≥ 3 over any field k, cannot be rationally parametrized if there are no 



"singular" points of the given curve over the algebraic closure of k.  This is in fact true, and can 
be proved in a completely algebraic way, involving an algebraic version of differential forms, 
namely formal derivatives.  We give a direct proof in the notes from 8300 in Fall 2001 (for the 
Fermat cubic in characteristic ≠2, 3?) as follows: 
 
Non rationality of Fermat cubic curve 
 Assume  that  (x/z)3 + (y/z)3 = 1, where x, y,z  are polynomial functions of t with no 
common factors.  (since neither x/z nor y/z is constant, neither x nor y is zero.)  Multiply through 
to obtain  (1): x3 + y3 = z3,  and differentiate to obtain (2): x2x' + y2y' = z2z', where ' denotes 
differentiation w.r.t. t.  Now we want to eliminate the z terms.  multiply (1) by z' and (2) by z, 
and subtract, to obtain z'x3 + z'y3 = x'x2z + y'y2z.  Collecting terms, and factoring gives   x2( 
xz'-zx') = y2 ( y'z - yz').  If either ( y'z - yz')=0, or  ( xz'-zx') = 0, then both do, and hence by the 
quotient rule for derivatives, we would have x/z and y/z constant.   Since x,y are rel prime, x2 
divides  (yz'-zy'), in C[t], and thus 2degree(x) ≤ deg(y)+deg(z)-1.  Repeating the argument for 
each of the other two variables, i.e. eliminating the x and y terms, leads to the same inequality 
with the variables permuted.  Adding the 3 inequalities gives  2[deg(x)+deg(y)+deg(z)] ≤ 
2[deg(x)+deg(y)+deg(z)] - 3, a contradiction. QED.  
   
 Thus this result is true over Q and C, for topological and analytic reasons, and the 
topological and analytic invariants involved have algebraic incarnations, which lead to a 
conceptual proof in characteristic p > 0 as well, as we will see later.  I.e. we will give a purely 
algebraic definition of the genus, and prove that a non constant rational map cannot exist if the 
target has larger genus than the source. 
 There are also sufficient criteria for existence of parametrizations, based on topological 
criteria as well.  I.e. if the Riemann surface of a curve has genus zero then the curve has a 
rational parametrization over C, but in some cases the parametrization also exists over Q.  Now a 
curve with a rational parametrization has infinitely many rational points, so the curve X2 + Y2 + 
1 = 0, which has no real points at all, hence no rational points, cannot be rationally 
parametrizable over Q.  In fact the complex points of this curve do have genus zero, so there is a 
parametrization over C.  To get a parametrization we need at least one rational point.   
 Then we can prove that an irreducible plane curve of degree 4 with four rational points, 
three of which are singular on the associated Riemann surface, is parametrizable over Q.  I.e. a 
smooth curve of degree 4 has genus 3, and three singular points imply that three homology 
cycles on the riemann surface have been shrunk each to a point, collapsing the three holes and 
resulting in a Riemann surface of genus zero.   
 The fourth rational point then allows the parametrization.  I.e. we consider all conics 
passing through all 4 rational points, and a general one of these meets the curve in one further 
point, for which we can solve rationally in terms of the others and the coefficients of the two 
intersecting curves.  Hence this residual intersection point is also rational.  Considered as a 
rational map from the quartic to a plane curve, the target is a conic, and the 4th points maps to a 
rational point of this conic.   
 Then the result follows from the fact that a conic with one rational point is 
parametrizable.  In particular, it has an infinite number of rational points.  technically we have 
found a map of degree one from our curve to a parametrizable curve, but we can also use conics 
to map the parametrizable curve to our curve, thus obtaining a parametrization of our curve.   
 In fact with suitable coordinates, both the map from our quartic to the parametrizable 
conic and the inverse map can be given by the same map, the standard quadratic transform (yz, 



xz, xy).  It should follow in a similar way, that an irreducible curve of degree d with "d-1 choose 
2" rational singular points, and one more rational point, at least in characteristic zero, is 
rationally parametrizable. 
 Now that we know the method of parametrization is inapplicable to smooth curves of 
genus ≥ 1, we can ask whether there is some other reason for such curves over Q to have an 
infinite number of rational points.  For genus one, i.e. smooth plane curves of degree 3, there is a 
method of producing more rational points from a given one, the "tangent method".  I.e. the 
tangent line at a rational point intersects the curve in a second rational point.  Then the tangent 
line at the second point meets the curve again at another rational point, etc...   
 So it is conceivable that a curve of genus one may have an infinite number of rational 
points, and in fact this can happen.  Mordell conjectured that if the genus is ≥ 2 however, then in 
fact there are never an infinite number of rational points, and this was proved by Deligne about 
30 years ago. 
 As foreshadowed by the arguments above, some of our principal goals will be to define 
an irreducible variety (the geometric analog of irreducible polynomials), define dimension of an 
irreducible variety, then show that every irreducible n dimensional affine or projective variety 
can be mapped finitely onto either an n dimensional affine or an n dimensional projective space, 
and then develop the algebraic analog of differential calculus and use it to prove that a smooth n 
dimensional projective hypersurface of degree ≥ n+2 cannot be rationally parametrized.   
 Along the way we will discuss the geometry of some hypersurfaces of degree ≤ 3, in the 
plane, in 3 space, and in 4 space.  We will also discuss the case of a non singular quadric in 5 
space, which parametrizes the famous "Grassman variety", the parameter space or "moduli" 
variety for lines in three space.  There are still many difficult open questions about which 
varieties have rational parametrizations, especially which varieties admit parametrizations of 
degree one.  For example, a 2:1 rational parametrization of any non singular cubic threefold in 4 
space was known classically, and it was suspected that parametrization of no degree one could 
exist.   The proof of this non existence result was achieved in 1972 using deep and beautiful 
results from the theory of abelian varieties. 
 
Outline of Topics 
 We will describe the most basic tools and concepts of algebraic geometry, in roughly the  
order of topics below.  I want to introduce enough language to state the important Riemann Roch 
problem, and to understand the ingredients in the statement of its (partial) solution, the Riemann 
Roch theorem.  The proof of the Riemann Roch theorem is best done with sheaf cohomology, the 
topic of another course.  The importance of the Riemann Roch theorem cannot be overstated.  I 
will say one thing about it.  If we want to classify all the projective algebraic varieties in the 
world, there is a standard approach:   
1)  classify all abstract algebraic varieties,  
2) for each abstract variety, determine all its projective embeddings. 
 The Riemann Roch theorem is the primary tool in step 2), which can be studied for a 
given variety independently of step 1). 
 
My goal is to cover at least parts I-V of the outline below, i.e. to prove Bezout's theorem. 
Outline 
I.  Algebraic sets 
decomposition into irreducible components. 
the dimension of an irreducible algebraic set.   
the differences between affine and projective sets. 



Dimension of intersections 
II.  Algebraic maps 
finite maps 
Veronese and Segre maps 
universal finite maps (normalization) 
closedness of all maps on projective sets 
birational equivalence 
III. Nonsingularity 
Zariski tangent spaces 
Unique factorization in the local ring of a non singular point 
Local equations for subvarieties 
IV.  Divisors 
Weil divisors vs Cartier divisors, linear equivalence 
A principal divisor on a curve has degree zero 
Bezout theorem for curves, applications to rationality of curves 
The role of divisors in describing maps to projective space 
The Riemann Roch problem (compute the dimension of the space  L(D) of a divisor) 
V.  Intersection numbers on non singular varieties 
Definition of intersection numbers of divisors in general position 
bilinearity of intersection product 
Invariance under linear equivalence 
Moving divisors up to linear equivalence 
Definition of intersection numbers of divisors not in general position 
Bezout's theorem 
VI. Differentials 
Rational and regular differential forms 
The canonical divisor class K on a non singular variety 
Statement of Riemann Roch for n.s. curves: ç(D) - ç(0) = deg(D), 
Statement of Riemann Roch for n.s. surfaces:  
 2(ç(D) - ç(0)) = D\(D-K); and (over ^) 12\ç(O) = K2 + çtop 
VII  Birational maps 
Blowing up a point 
Birational maps of surfaces 
 
Remarks: 
 This is a course about algebraic varieties, not schemes, but schemes are unavoidable even 
here, and we will learn a few things about subschemes of classical varieties, especially when 
doing intersection theory.  For us a scheme is an algebraic set plus a distinguished ideal of 
defining equations (among the infinitely many choices).   
 Along the way we will learn the geometric meaning of a lot of concepts from algebra, 
such as divides (contains), product (union), domain (irreducible set), primary decomposition 
(decomposition into irreducible components), non minimal primes (embedded subvarieties), zero 
divisors (existence of more than one component), prime ideal (irreducible subset), maximal ideal 
(point), transcendence degree (dimension), regular sequences (flag of subvarieties of decreasing 
dimension), unique factorization (codimension one sets have one defining equation), integral 
closure (local irreducibility), length (intersection multiplicity), integral ring extension (proper 
map with finite fibers), field isomorphism (isomorphism of dense open sets), ring surjection 
(closed embedding), ring injection (dense morphism), homogeneous polynomials (compact sets), 



Nakayama lemma (implicit function theorem), radical ideal (algebraic set), ideal ("scheme", e.g. 
alg set plus multiplicities). 
 We will work over an algebraically closed field of arbitrary 
characteristic.  The geometric notions mirror those studied in differential topology but the 
treatment is completely algebraic, to serve the needs of algebraists and number theorists. 
Prerequisites: 
 You will need to know something about noetherian rings and ideals, fields, vector spaces, 
polynomials, and "localization" of rings (generalizing how to construct a field of fractions from a 
domain).  We will always state facts we need, especially if you ask, so you can survive without 
full knowledge of them.  (We will not use the theory of primary decomposition.) 
 
The difference between a scheme and a variety 
 In the affine case, i.e. as sub objects of kn determined by ideals in k[T1,...,Tn], to ask the 
difference between the scheme and the variety determined by an ideal I is to ask the question: 
how much more information is contained in I as opposed to its radical rad(I)?  Just as the ideal I 
determines its radical, the scheme "spec(k[T]/I)" determines the variety V(I).  The variety is just 
the information contained in the underlying point set of the scheme, and the two ideals I and 
rad(I) determine exactly the same point set in kn. 
 The question to begin with is the simpler one, how much information is contained in the 
variety, i.e. in rad(I)?  For example, the ideal rad(I) is uniquely the intersection of the minimal 
prime ideals P1,...,Pr containing I.  Thus rad(I) determines these prime ideals, which correspond 
to the irreducible components of the variety V(I).  However the full ideal I may determine other 
prime ideals.  If we choose any irredundant primary decomposition of I = Q1€....Qr+s, such that 
the prime ideals rad(Qi) = Pi are minimal for i =1,...,s, then from the theory of primary 
decomposition one learns that I determines the primary ideals Q1,...,Qs, hence also the prime 
ideals P1,...,Ps, as well as the prime ideals Ps+1,...,Ps+t. 
 Thus I determines 
(1) the irreducible decomposition of the point set V(I) = V(P1)⁄.....⁄V(Ps) 
(2) the "embedded" subvarieties V(Ps+1),....,V(Ps+t), each properly contained in some V(Pi) 
with i ≤ s. 
(3) the primary ideals Q1,....,Qs with V(Qi) = V(Pi) for i=1,...,s. 
 The radical rad(I) contains only the information in (1).  The embedded scheme 
determined by I is equivalent to the pair I fi k[T], while the abstract scheme determined by I is 
equivalent to the quotient ring k[T]/I.  Similarly the embedded variety determined by I is 
equivalent to the pair rad(I) fi k[T], and the abstract variety determined by I is equivalent to the 
quotient ring k[T]/rad(I).   
 In this course we will tend to ignore the information in (2), or consider only examples 
where the ideals Qs+1,...,Qs+t do not exist, i.e. we will not study schemes with embedded 
components.  In some of our work however, showing these components do not exist will be a 
principal concern for us.  But even for each ordinary component V(Pi), i=1...s, of the variety, the 
ideal Qi determined by I, carries extra information about that component.  We will want to use 
this information in several settings.  What is that information?  The simplest piece of data we can 
derive from it is an integer, the multiplicity of the component.  Thus a scheme determines a 
cycle, an integer associated to each irreducible component of the associated variety.  
 To see how this may be defined, consider the quotient ring k[T]/I, which kills off all 
ideals smaller than I, by setting them equal to zero.  Then localize this ring at one of the prime 



ideals Pi, which kills off all ideals not contained in Pi, by making them into the unit ideal.  There 
is now only one prime ideal left, P which is now both minimal and maximal.  In this localized 
zero dimensional ring (k[T]/I)P, there is now only the prime ideal P, and I is an ideal such that 
rad(I) = P.  Then asking what is the difference between the information about the component 
V(P) which is contained in just the variety V(I), and the fuller information about that component 
which is contained in the scheme determined by I, is the same as asking the difference between 
the information in the field (k[T]/P)P = (k[T]/rad(I))P, and the zero dimensional ring (k[T]/I)P.   
 Now the ring k[T]/P is the affine ring of regular functions which is equivalent to the 
irreducible component V(P), and the field (k[T]/P)P is the field of rational functions on this 
component.  The slightly larger ring (k[T]/I)P constructed from the full ideal I, determines that 
field of rational functions too, but is a little bit larger ring since it has some non zero ideals.  Just 
as we measure the dimension of a ring by its chains of prime ideals, we can measure the "size" of 
a zero dimensional ring by using chains of arbitrary ideals, the "length" of the ring.  I.e. (k[T]/I)P 
is a ring whose maximal ideal is nilpotent, and it follows that it has finite length.  This length 
assigns an integer to the component, that measures the multiplicity with which it should be 
counted in some problems such as intersection multiplicity. 
 
Detailed Outline 
 In chapter I, we study the set theoretic properties of varieties, their components and the 
dimensions of the components, for varieties and for fibers of morphisms between varieties.  The 
only time scheme theoretic properties come up is when we briefly mention the degree of a 
projective hypersurface, to distinguish the hypersurfaces V(T) and V(Tr), which have the same 
point set but different degrees. 
 In chapter II, we study the concepts of tangent space and tangent cone to a variety at a 
point.  The tangent cone to a variety of codimension one in affine space, is a hypersurface which 
approximates the variety well at the point, and is dedfined by the lowest order term of the Taylor 
series for the variety at the given point.  Since it is defined by a homogeneous polynomial which 
may not be square free, it may not be a variety, and in fact is best considered as a scheme since 
as a projective hypersurface it has a degree.  E.g. the variety y-x3 has tangent cone at (0,0) 
defined by the ideal (y), and the variety y2-x3 has tangent cone defined by (y2).  Both tangent 
cones have the same point set, the x axis, but the second one if considered as a scheme, or a 
cycle, would allow us to associate the mutliplicity 2 to the point (0,0) on the curve y2-x3.  The 
treatment in chapter II ignores this and analyzes only the point set of a general tangent cone, so 
does not introduce scheme methods.  (Early in chapter 1 however, the notion of multiplicity is 
introduced in the case of plane curves like these.) 
 The topic of birational transforms in section 4 may have to be skipped for lack of time, 
although it is very important and basic.  This is a standard construction.  Given a smooth n 
dimensional variety Y, we construct another smooth n dimensional variety X and a morphism 
ß:X¨Y, such the map ß is an isomorphism over all but one one point of Y, and over that point the 
fiber is @n-1.  This is called blowing up that one point.  We will need the concept of 
normalization of a variety in section 5, especially that of a projective curve.  We may have to 
skip all but the definition and statement of basic properties of the degree of a map in section 6. 
 In chapter III, we begin to study the simplest schemes, locally principal subschemes of 
smooth varieties, called "effective divisors".  These are essentially finite sets of irreducible 
subvarieties of codimension one, each counted with a non negative integer multiplicity.  In 
projective space these are just exactly hypersurfaces, considered with multiplicities so as to have 



a well defined degree.  In the notation given above for studying the information provided about a 
component by an ideal, when the component has codimension one, we have a local ring (k[T]/I)P 
in which the maximal ideal is both principal and nilpotent, and the degree of nilpotency will 
equal the length of the ring.  I.e. the maximal ideal is generated by some element f, and the ideal 
of the component has a local equation of form fr for some integer r, and that r assigns the 
multiplicity we want to the component.   
 Each rational function has an associated divisor which determines that function on a 
projective variety up to a constant multiple.  We prove the important and basic theorem that the 
divisor of a rational function on a smooth projective curve has degree zero, which lies at the 
basis of our main result on intersection numbers in chapter IV.   
 Modding out the group of all divisors by the subgroup of divisors of functions, gives an 
important invariant of a variety X, called its Picard variety.  Although the group of divisors is an 
infinite dimensional free group, this quotient group Pic(X) is a disjoint union of finite 
dimensional algebraic varieties itself.  Determining the dimension of this variety is important as 
is the problem of determining all effective divisors which are equivalent in Pic(X), i.e. which 
effective divisors are linearly equivalent to others. 
 The problem of determining the dimension of the projective space |D| of effective 
divisors in the linear equivalence class containing a given divisor D, is called the Riemann Roch 
problem.  Every divisor on X for which this dimension is r ≥ 1, determines a rational map from 
X to @r, and these projective mappings are very useful in studying the geometry of X.  So 
divisor classes let us study the relation between the intrinsic geometry of X and the geometry of 
its embedded realizations in projective space.   
 It turns out one can say something about the dimension of this space |D| in terms of the 
``intersection numbers`` (see chapter IV) of D and those in a very important and intrinsic divisor 
class, the ``canonical`` divisor class |K|.  Canonical divisors have many important applications, 
e.g. to non rationality of hypersurfaces, and are studied in chapter III.  For instance the fact that 
the canonical divisor of a smooth plane cubic is 0 implies such a cubic is not rational or 
parametrizable. 
 In chapter IV, we consider more general local complete intersection schemes, still on a 
smooth variety.  If X is n dimensional and smooth, consider r ≥ n effective divisors D1,....,Dr on 
X, defined by local equations f1,....,fr, and whose intersection D1€....€Dr = Y has pure 
dimension n-r.  Then it follows that the subscheme Y has no embedded components, i.e. the ideal 
I = (f1,....,fr) has no embedded primes.  These "local complete intersection schemes" generalize 
divisors in the sense that the codimension still equals the number of local equations needed to 
define the ideal.   
 In this case the main information about the components of Y contained in I is their 
multiplicities, defined by the lengths of the local rings discussed above.  When r = n, and Y is a 
finite set of points, we will show the local intersection multiplicites assigned in this way to the 
points of the set Y = D1€....€Dr, give numbers which satisfy Bezout's theorem.  I.e. in case C is 
projective space we will prove that the sum of these local intersection multiplicities equals the 
product of the degrees of the hypersurfaces Di.  In particular, n hypersurfaces in @n of degrees 
d1,....,dn cannot have more than °di common points, unless they have infinitely many.  This is 
not true over a non algebraically closed field like the reals, where n real hypersurfaces can have 
more common real points than the product of their degrees, and still only a finite number of real 
points in common.  The explanation lies in the fact that such counterexamples to Bezout over %, 
have infinitely common points over ^.  Bezout`s theorem has some lovely and striking 
applications, e.g. to division algebras over %. 



 More generally, we prove ``Bezout`` on any smooth variety, that intersection numbers are 
invariant under changing the divisors to linearly equivalent ones.  With this background we not 
only prove Bezout in @n, but state and apply the famous ``Riemann Roch`` theorem for curves 
and surfaces.  This is a formula relating the dimension of |D|, a problem posed in chapter III, to 
the intersection numbers of D and a canonical divisor K.   
 Of course in this introduction to schemes, we have only been discussing schemes which 
are finitely generated over an algebraically closed field.  In general scheme theory, one allows 
not only that the ring has nilpotents, but the ring need not be a quotient of a polynomial ring over 
a field, much less an algebraically closed one.  One simply considers a ring, possibly noetherian, 
and asks how the algebraic constructions which we made for the more classical setting, behave 
now.  This allows the possibility of using geometric intuition in the analysis of general rings.  
Although one can make many of the definitions, one cannot prove many theorems in this 
generality.  Still it is fruitful in some settings.  For example in the non commutative setting, 
Professor Jon Carlson was able to show that if certain non commutative rings studied in 
representation theory had no zero divisors, then the associated representation varieties were 
irreducible, generalizing a standard fact in commutative classical algebraic geometry. 
 
Remarks on the Basic Questions: 
1. What do the solution sets of polynomial equations "look like"?  I.e. what are their 
geometric properties? 
 a. Are the solution sets empty or non empty?  
This is often very difficult over #, $, (see Silverman - Tate for examples) even over % but here 
we can at least use IVT;  
Value of working over ^: nullstellensatz says they are always non empty except when the 
equations generate the unit ideal.  e.g. x-1 and x-2 generate unit ideal since their difference is 1.  
This is entirely analogous to the criterion for existence of solutions of linear equations, a single 
non homogeneous equation has solutions, and a non homogeneous linear system has solutions if 
and only if we cannot reduce to an equation of form 0 = 1 by Gaussian elimination, i.e. if and 
only if the equations do not generate the unit ideal.  In fact here it is sufficient to use linear 
combinations of the equations to generate the unit from an inconsistent system.  In several 
variables again, one non - constant non homogeneous equation always has solutions, either by 
the nullsatz or directly by induction on the number of variables.   
Advantage of working in "projective space", i.e. with homogeneous equations: the results 
which hold for homogeneous linear equations generalize: not only do all homogeneous systems 
of equations of any degree have the zero solution, but systems of fewer than n homogeneous 
equations in n variables always have non zero solutions, again over an algebraically closed field 
(otherwise x2+y2 does not, over % for instance.)  Starting from non homogeneous equations and 
homogenizing them yields solutions "at infinity",  e.g. the parallel lines in the affine x,y plane x-
1 and x-2 become the lines x-z and x-2z in the projective x,y,z plane, which have the common 
solution (0,1,0) lying on the line at infinity z=0.  In general homogeneous equations provide 
solutions which compactify the solutions of non homogeneous equations. 
b.  If there are solutions, when are there infinitely many? 
always assume we are working over ^ or an algebraically closed field, from now on.  Assuming 
solutions exist, if there are more variables than equations, then there should be an infinite 
number of solutions.  In particular, a system of fewer than n homogeneous equations in n+1 
variables have an infinite number of non zero, non proportional, solutions.  For example, one 
homogeneous equation in three variables, i.e. one equation in the projective plane, over an 
algebraically closed field, should have an infinite number of solutions.   



What does that infinite set look like?  Over ^, we can try to use calculus, i.e. the implicit 
function theorem.  Thus, assume the derivative of an affine form f(x,y) of the equation at some 
solution is non zero, i.e. at least one partial is not zero, e.g. ∆f/∆y ± 0 at p = (a,b).  Then the IFT 
says that near p, the solution set {f=0} is the graph of an analytic function y(x) with y(a) = b.  In 
particular, the part of the solution set near p is analytically isomorphic to an open disc in ^.  Thus 
if at each point of the solution set, at least one partial in an affine equation is non zero, then the 
solution set is everywhere locally isomorphic to such a disk, i,e, the solution set is a one 
dimensional complex manifold, and thus also a compact oriented real 2-manifold.  Since it can 
be shown that it is connected, it follows from topology that the solution set is homeomorphic to a 
sphere with g ≥ 0 handles attached, where the number of handles g is called the genus.  For this 
reason we call such a solution set a (complex) curve, or Riemann surface.  But what is the genus?  
One way to tell: degeneration to a union of a general family of lines.  Another way:  give a 
branched covering map from the surface to a line, i.e. a topological sphere, and try to count the 
branching number.  Then use Hurwitz formula. 
c. When can we parametrize the infinite solution set? 
 Try to understand a solution set by parametrizing it, i.e. by finding a map onto it, or 
densely onto it, from affine space, e.g. from !1 onto a curve.  When is this possible?  From our 
topological analysis, we might think only when the genus is zero.  At least it follows from 
complex analysis that this is a necessary condition but why is it sufficient?  What are some 
examples of this phenomenon?  A line, x+y = 1,  or a conic such as x2+y2 = 1.  We can 
parametrize these, by projection, parametrize the line by projecting from a point off the line, and 
parametrize the conic by projecting from a point on the conic.  Then consider the special cubics 
y2 -x3, or y2 -x3-x2, in which cases one must project from the unique singular point of the cubic.  
A quartic with three ordinary double points at the standard vertices can be parametrized by a 
conic, using the standard quadratic transformation.   
 Try to generate a conjecture on when an irreducible plane curve is rational, in terms of its 
number of singular points.  Look at some reducible examples, such as a cubic composed of a 
conic and a  line, which does not admit a dense map from one copy of a line.  Also note a smooth 
cubic plus a line is a quartic with three ordinary double points but also does not admit a dense 
parametrization from a line.  A sextic with 9 ordinary double points has genus one, but a sextic 
composed of two cubics can also have 9 ordinary double points but is a union of two curves each 
of genus one.  Could we also have a parametrizable quartic with only two double points?  A 
curves of form y2 = f(x) where f has degree 4 in x, and two equal roots, seems to be 
parametrizable and only to have one (finite) singular point, so one is motivated to introduce a 
measure of badness of the singularity, such as multiplicity, and to look at points at infinity.  With 
homogeneous coords, e.g. y2 = x4+x2, becomes y2z2 = x4+x2z2 which has a point on the line z 
= 0, at (0,1,0), i.e. at (0,0) with affine equation (set y=1) z2 = x4+x2z2, a non ordinary double 
point.  
d. When are there a finite number of solutions, and then how many are there? A general 
system of n homogeneous equations in n+1 variables should have a finite number of common 
solutions, how many? Bezout gives the answer as follows.  The number of common points 
should be either infinite or not more than the product of the degees of the equations.  Consider 
the case of linear equations, then it is one.  Consider two plane curves.  Try to prove Bezout in 
case one of the curves is parametrizable, such as a line or smooth conic.   
 The number of points in a finite solution set generalizes to the question of the number of 
``components`` for an arbitrary solution set.  I.e. there is a notion of irreducible components, and 
for each component, a notion of dimension of that component. 


