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Preamble

The following set of lectures was designed for the Oxford Undergraduate course and are given
during the 3rd year of the BA or MPhys course. I have tried to keep the mathematical jargon
to a minimum and ground most of the explanations with physical examples and applications.
Yet you will see that, although there is very little emphasis on differential geometry you still
have to learn what tensors or covariant derivatives are. So be it.

These notes are not very original and are based on a number of books and lectures. In
particular I have used

• Gravitation and Cosmology, Steven Weinberg (Wiley, 1972)

• Gravity: An Introduction to Einstein’s General Relativity, James B. Hartle (Addison
Wesley, 2003)

• Part II General Relativity, G W Gibbons (can be found online on
http://www.damtp.cam.ac.uk/research/gr/members/gibbons/partiipublic-2006.pdf)

• General Relativity: An introduction for Physicists, M.P Hobson, G.P.Efstathiou and
A.N.Lasenby (CUP, 2006)

• General Relativity, Alan Heavens (not publicly available).

• Theories of Gravity and Cosmology T. Clifton, P.G. Ferreira and C. Skordis (Physics
Reports, 2012)

• Cosmological Physics John Peacock (CUP, 1998)

But there are many texts out there that you can consult.
For a start, I will assume that the time coordinate, t and the spatial coordinate, ~x =

(x1, x2, x3) can be organized into a 4-vector (x0, x1, x2, x3) = (ct, ~x) where c is the speed of
light. Throughout these lecture notes I will use the (−,+,+,+) convention for the metric.
This means that the Minkowski metric is a matrix of the form

ηµν =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











(1)
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You will note that this is the opposite convention to the one used when you were first learning
special relativity. In fact you will find that, in general (but not always), books on General
Relativity will use the convention we use here, while books on particle physics or quantum field
theory will use the opposite convention.

We will be using the convention that Roman labels (like i, j, etc) span 1 to 3 and label
spatial vectors while Greek labels (such as α, β, etc) span 0 to 3 and label space-time vectors.

We will also be using the Einstein summation convention. This means that, whenever we
have a pair of indices which are the same, we must add over them. So for example, when we
write

ds2 = ηαβdx
αdxβ

we mean

ds2 =
3
∑

α=0

3
∑

β=0

ηαβdx
αdxβ

Note that the paired indices always appear with one as a superscript (i.e. ”up”) and the other
one as a subscript (i.e. ”down”).

Finally, I am extremely grateful to Tessa Baker, Tim Clifton, Rosanna Hardwick, Alan
Heavens, Anthony Lewis, Ed Macaulay and Patrick Timoney for their help in putting together
the lecture notes, exercises and spotting errors.

1 Why General Relativity?

Throughout your degree, you have learnt how almost all the laws of physics are invariant if
you transform between inertial reference frames. With Special Relativity you can now write
Newton’s 2nd law, the conservation of energy and momentum, Maxwell’s equations, etc in a way
that they are unchanged under the Lorentz transformation. One force stands apart: gravity.
Newton’s law of gravity, the inverse square law, is manifestly not invariant under the Lorentz
transformation.

You can now ask yourself the question: can we write down the laws of physics so they are
invariant under any transformation? Not only between reference frames with constant velocity
but also between accelerating reference frames. It turns out that we can and in doing so, we
incorporate gravity into the mix. That is what the General Theory of Relativity is about.

2 Newtonian Gravity

In these lectures we will be studying the modern view of gravity. Einstein’s theory of space-
time is one of the crowning achievements of modern physics and transformed the way we think
about the fundamental laws of nature. It superseded a spectacularly successful theory, Newton’s
theory of gravity. If we are to understand the importance and consequences of Einstein’s theory,
we need to learn (or revise) the main characteristics of Newton’s theory.
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Newton’s Law of Universal Gravitation for two bodies A and B with masses mA and mB

at a separation r can be stated in a simplified form as:

F = −G
mAmB

r2

where G = 6.672× 10−11 m3kg−1s−2. The resulting gravitational acceleration felt by mass mA

is

g = −G
mB

r2

We can rewrite the expression in terms of vectors r = (x1, x2, x3).

F = GmAmB
rB − rA

r3

is the force exerted on the mass mA and the gravitational acceleration

F = mAg

Consider now a few simple applications. We can use the above expression to work out the
gravitational acceleration on the surface of the Earth. If we Taylor expand around the radius
of the Earth, R⊕ we find

g = −G
M⊕
r2

= −G
M⊕

(R⊕ + h)2
≃ −G

M⊕
R2

⊕
(1− 2

h

R⊕
)

where h is the height above the surface of the Earth and M⊕ is the mass of the Earth. With
M⊕ = 5.974× 1027g and R⊕ = 6.378× 108cm we find a familiar value: g ≃ 9.8ms−2.

The power of Newton’s theory is that it allows us to describe, with tremendous accuracy,
the evolution of the Solar System. To do so, we need to solve the two body problem. We have
that the equations of motion are

mir̈A = GmAmB
rB − rA

r3

with r = |r| = |rA − rB|. We are interested in how r evolves and we can find its evolution by
simplifying this system. Let us first define the total mass

M = mA +mB

and the reduced mass

µ =
mAmB

M

Ignoring the motion of the centre of mass, we have that the Lagrangian for this system will be

L =
1

2
µṙ · ṙ+G

µM

r
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It is more convenient to transform to spherical coordinates so

x1 = r cos(φ) sin(θ)

x2 = r sin(φ) sin(θ)

x3 = r cos(θ)

then the Lagrangian becomes

L =
1

2
µ(ṙ2 + r2θ̇2 + r2 sin2(θ)φ̇2) +G

µM

r

The angular parts of the Euler-Lagrange equations are

µ
d

dt
(r2θ̇) = µr2 sin(θ) cos(θ)φ̇2

d

dt

[

µr2 sin2(θ)φ̇
]

= 0

We can integrate the second equation to give

µr2 sin2(θ)φ̇ = Jφ

and, multiplying the first equation by 2r2θ̇, we can integrate to find

µ2r4θ̇2 = J2
θ − J2

φ

sin2(θ)

We can now choose a coordinate system such that the orbit lies on the equatorial plane (θ = π/2)
and Jθ = Jφ = J which corresponds to θ̇ = 0. We are left with two coordinates, r and φ.

Replacing the the angular momentum conservation equation in the radial equation of mo-
tion, we have

µr̈ − J2

µr3
+G

µM

r2
= 0

which we can integrate to give us an expression for the conserved energy

E

µ
=

1

2
ṙ2 +

1

2

J2

µ2r2
−G

M

r
(2)

Note that we can define an effective potential energy which is given by

Veff(r) =
1

2

J2

µr2
−G

µM

r

Again, using conservation of energy, we can use

Jdt = µr2dφ

to reexpress time derivatives in terms of angular derivatives

d

dt
=

J

µr2
d

dφ
and

d2

dt2
=

J

µr2
d

dφ
(
J

µr2
d

dφ
)
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The Euler Lagrange equation then becomes

J

r2
d

dφ

(

J

µr2
dr

dφ

)

− J2

µr3
= −G

µM

r2

If we change to u = 1/r we have

d2u

dφ2
+ u =

µ

J2
GµM (3)

This is the simple harmonic oscillator equation with a constant driving force. We can solve this
equation to find

u =
1

r
=

Gµ(µM)

J2



1 +

√

√

√

√1 +
2EJ2

µ(GµM)2
cos(φ− φ0)





where E is the conserved energy of the system (and an integration constant) and φ0 is the
turning point of the orbit (and the second integration constant). You should recognize this as
the equation for a conic with ellipticity e given by

e =

√

√

√

√1 +
2EJ2

µ(GµM)2

In other words, the trajectories of the two body problem correspond to closed orbits in the
form of ellipses.

The Solar System is almost perfectly described in terms of these trajectories. In fact almost
all the planets have quasi-circular orbits with eccentricities e ≃ 1− 10%. Mercury stands out,
with e ≃ 20%. Furthermore, Mercury’s orbit does not actually close in on itself but precesses
at a rate of about 5600 arc seconds per century. This primarily due to the effect of the other
planets slowly nudging it around and, again, can be explained with Newtonian mechanics. But
since the mid 19th century, it has been known that there is still an un accounted amount of
precession, about 43 arc seconds per century. We shall find its origin in later lectures.

Finally, it is convenient to define the Newtonian potential or gravitational potential in terms
of the potential energy, V , of the system:

V ≡ mΦ

The gravitational force will then be

F = −∇V

and the gravitational acceleration is given by

g = −∇Φ

The gravitational potential satisfies the Newton Poisson equation

∇2Φ = 4πGρ
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3 The Equivalence Principle

In the last section, we worked with two equations: Newton’s Law of Universal Attraction and
Newton’s 2nd Law. In both of these equations a ”mass” appears and we assumed that they are
one and the same. But let us now rewrite them and be explicit about the different types of
mass coming in, the inertial mass mI and the gravitational mass, mG:

mIa = F

V = −G
mGMG

r

We assumed that

mI = mG

but are they? Their equivalence has been tested to surprising precision with Lunar Laser
Ranging observations. This involves bouncing a laser pulse off reflecting mirrors sitting on the
surface of the moon and measuring its orbit as it sits in the joint gravitational field of both the
Earth and the Sun. The distance between the Earth and the Moon is 384,401 km and has been
measured with a precision of under a centimetre

The Lunar Ranging experiment can be seen as a type of Eötvos Experiment where the Earth
and Moon are the test masses sitting in the gravitational field of the Sun. A laboratory based
Eötvos Experiment can be constructed in the following way. Consider two masses made of
different material attached to either end of a rod. The rod is suspended from a string on the
surface of the Earth. Each of the masses will be subjected to two forces: the gravitational
pull to the centre and the centrifugal force. Hence the rod will hang at an angle relative to
the vertical direction. The rod is free to rotate if there is a difference in the gravitational
acceleration between the masses. This can only happen if there is a difference between mG and
mI .

We can look at the numbers here. Consider the two masses, which have gravitational masses
mG1 and mG2 and inertial masses mI1 and mI2. Denote the component of the gravitational
force in the direction that makes the rod twist to be gt and the acceleration of each of the
masses to be at1 and at2. We then have that

mI1a
t
1 = mG1g

t

mI2a
t
2 = mG2g

t

If the ratios of inertial to gravitational mass are the same for both bodies, then the acceleration
will be the same for both. Any difference in the gravitational and inertial masses will lead to
a ”twist” in the pendulum which can be characterized in terms of a dimensionless paramater:

η =
at1 − at2
at1 + at2

=

(

mG1

mI1
− mG2

mI2

)

(

mG1

mI1
+ mG2

mI2

)

Using beryllium and titanium, the current best constraint on η is

η =
at1 − at2
at1 + at2

= (0.3± 1.8)× 10−13
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Figure 1: The pendulum for the Eotvos Experiment

which is a factor of 4 better than the original Eotvos experiment of 1922. To date, one of the
most successful tests is to use the Earth-Moon system in the gravitational field of the Sun as a
giant Eotvos experiment. The difference, with regards to the lab based Eotvos experiments, is
that the masses of the test bodies (i.e. the Earth and Moon) are not negligible any more. The
test can be done by using lasers reflected off mirrors left on the Moon by the Apollo 11 mission
in 1969 and, as mentioned earlier, the constraint is

η = (−1.0± 1.4)× 10−13

This is one of the most accurately tested principles of physics and we expect this constraint to
improve by 5 orders of magnitude when space based tests can be performed.

If the gravitational and inertial masses are the same, then we have that a particle in a
gravitational field will obey

r̈ =
mG

mI

g = g

and this will be true of any particle. This has a profound consequence-it means that I can
always find a time dependent coordinate transformation (from r to R),

r = R+ b(t)

such that

R̈ = g − b̈(t) = 0

In other words, it is always possible to pick an accelerated reference frame such that the observer
doesn’t feel the gravitational field at all. For example, consider a particle at rest near the surface
of the Earth. It will feel a gravitational pull of g = −9.8ms−2. Now place it in a reference
frame such that b = 1

2
gt2 (such as a freely falling elevator). Then the particle at rest in this

reference frame won’t feel the gravitational pull.
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Figure 2: Reference frames for the gravitational redshift

Einstein had an epiphany when he realized this. As he said ”... for an observer falling freely
from the roof of a house there exists- at least in his immediate surroundings- no gravitational
field”. It led him to formulate the Equivalence Principle of which there are three versions that
we will state here.

• Weak Equivalence Principle (WEP): All uncharged, freely falling test particles follow the
same trajectories, once an initial position and velocity have been prescribed.

• Strong Equivalence Principle (SEP): The WEP is valid, and furthermore in all freely
falling frames one recovers (locally, and up to tidal gravitational forces) the same laws of
special relativistic physics, independent of position or velocity.

• Einstein Equivalence Principle (EEP): The WEP is valid for massive gravitating objects
as well as test particles, and in all freely falling frames one recovers (locally, and up to
tidal gravitational forces) the same special relativistic physics, independent of position or
velocity.

You will note that these three equivalent principles have different remits. While the first makes a
simple statement about the trajectories of freely falling bodies, the second one says something
about the laws of physics obeyed by the freely falling bodies and the third addresses going
beyond the simplified, point-like test mass approximation. We will use WEP, SEP and EEP
interchangeably throughout these lectures although they can be tested in distinct ways.

Let us briefly study one of the consequences of the Equivalence Principle. Consider two
observers, one at position A which is at a height h above the surface of the Earth and another
at a position B on the surface of the Earth. Observer A emits a pulse every ∆tA to be received
by observer B every ∆tB. What is the relation between ∆tA and ∆tB and how is it affected by
the gravitational field?
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Given what we have seen above, we can think of this as two observers moving upwards with
an acceleration g. We have that the positions of A and B are given by

zA(t) =
1

2
gt2 + h

zB(t) =
1

2
gt2

Now assume the first pulse is emitted at t = 0 by A and is received at time t1 by B. A
subsequent pulse is then emitted at time ∆tA by A and then received at time t1 + ∆tB. We
have that

zA(0)− zB(t1) = h− 1

2
gt21 = ct1

zA(∆tA)− zB(t1 +∆tB) = h +
1

2
g∆t2A − 1

2
g(t1 +∆tB)

2

≃ h− 1

2
gt21 − gt1∆tB = c(t1 +∆tB −∆tA)

where we have discarded higher order terms in ∆t. Combining the two equations, and assuming
t1 ≃ h/c we have that

∆tA ≃ (1 +
gh

c2
)∆tB

In other words, there is gravitational time dilation due to the difference in the gravitational
potentials at the two points ΦB − ΦA = −gh so

Rate Received =
(

1− ΦB − ΦA

c2

)

× Rate Emitted

This is known as the gravitational redshift of light.

4 Geodesics

In the previous section, we saw how important accelerated reference frames could be. From the
various equivalence principles, it seems that an accelerating reference frame will be indistin-
guishable from a frame in a gravitational field. Let us then study how particles and observers
travel through space.

In flat space, a particle follows straight lines given by solutions to the kinematic equations
of motion

d2xα

dτ 2
= 0

The particle will trace out a path in space-time xα(τ) and the solution is of the form

xα(τ) = xα(τi) + uα(τ − τi)

where xα(τi) and uα are integration constants.
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In the presence of a gravitational field, the path taken by a particle will be curved. Alterna-
tively, in an accelerating reference frame, the same will happen. We call Geodesics the shortest
paths between two points in space-time. We have just written down the geodesic in a flat, force
free space. If we wish to do so in the presence of a gravitational field, we need to solve the
Geodesic equation. As Einstein argued, according to the principle of equivalence, there should
be a freely falling coordinate system yα in which particles move in a straight line and therefore
satisfy

d2yα

dτ 2
= 0

where τ is the proper time of the particle and hence

c2dτ 2 = −ηαβdy
αdyβ

Now choose a different coordinate system, xµ; it can be at rest, accelerating, rotating, etc. We
can reexpress the yαs in terms of the xµ, yα(xµ). Using the chain rule we have

0 =
d

dτ

(

∂yα

∂xµ

dxµ

dτ

)

=
∂yα

∂xµ

d2xµ

dτ 2
+

∂2yα

∂xµ∂xν

dxµ

dτ

dxν

dτ

Multiplying through by the inverse Jacobian ∂xβ/∂yα we end up with the geodesic equation
with the form

d2xβ

dτ 2
+ Γβ

µν

dxµ

dτ

dxν

dτ
= 0 (4)

where we have defined the affine connection

Γβ
µν =

∂xβ

∂yα
∂2yα

∂xµ∂xν

We can also express the proper time in these new (or arbitrary coordinates) as

c2dτ 2 = −ηαβ
∂yα

∂xµ
dxµ∂y

β

∂xν
dxν ≡ −gµνdx

µdxν

where we have defined the metric:

gµν = ηαβ
∂yα

∂xµ

∂yβ

∂xν

The situation is slightly different for a massless particle. Neutrinos or photons follow null
paths so dτ = 0. Instead of using τ we can use some other parameter σ. We then have

d2yα

dσ2
= 0

−ηαβ
dyα

dσ

dyβ

dσ
= 0
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ne One can repeat the same derivation as above to find

d2xµ

dσ2
+ Γµ

αβ

dxα

dσ

dxβ

dσ
= 0

−gαβ
dyα

dσ

dyβ

dσ
= 0

So, given an Γµ
αβ and gαβ, we can work out the equations in a given reference frame.

It turns out that we can simplify the calculation even further: Γµ
αβ can be found from gαβ .

Taking the partial derivative of the metric, we have that

∂gµν
∂xλ

=
∂2yα

∂xλ∂xµ

∂yβ

∂xν
ηαβ +

∂2yβ

∂xλ∂xν

∂yα

∂xµ
ηαβ

From the definitiion of Γµ
αβ we can replace it in the above expression

∂gµν
∂xλ

= Γγ
λµ

∂yα

∂xγ

∂yβ

∂xν
ηαβ + Γγ

λν

∂yβ

∂xγ

∂yα

∂xµ
ηαβ

which can be written as

∂gµν
∂xλ

= Γγ
λµgγν + Γγ

λνgγµ

We can now permute indices and add them to solve and find

Γµ
αβ =

1

2
gµν

(

∂gαν
∂xβ

+
∂gνβ
∂xα

− ∂gαβ
∂xν

)

Hence, as advertised, given a metric, gµν , we can find the connection coefficents Γµ
αβ and then

solve the geodesic equation.
It often useful to find the geodesic equations in terms of a variational principle. In fact, it is

also a convenient method for, given a metric, calculating the connection coefficients. Consider
a path in space time xα(λ). We can define the proper time elapsed between two points on that
curve, A and B, to be

cτAB =
∫ B

A
Ldλ =

∫ B

A
dλ
√

−ηαβ ẋαẋβ

The derivatives are taken with regards to λ. It is now possible to define an action for the path
xα(λ):

S = −mc2τ

and we can minimize this action to find the path which takes the most amount of proper time
between points A and B. This path will be the geodesic. For example, if we choose x0 = cλ = ct
we have that

S = −mc
∫

dt

√

√

√

√c2 −
(

dx

dt

)2
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More generally, we can use the Euler Lagrange equations:

d

dλ

(

∂L

∂ẋα

)

=
∂L

∂xα

Given that L is independent of xα (and dτ = Ldλ) we have that the equation of motion becomes

∂L

∂ẋα
= −1

2

1

L
ηαβ

dxβ

dλ
= −1

2
ηαβ

dxβ

dτ

The resulting equations then become

d2xα

dτ 2
= 0

Although the above action is reparametrization invariant (i.e. we can change our definition of
λ and the action is unaffected), the square root is difficult to work with. It is easier to work
with

S̃ = −m
∫

dληαβ
dxα

dλ

dxβ

dλ
= m

∫

dλL2

The Euler-Lagrange equation then becomes

∂L2

∂xµ
− d

dλ

(

∂L2

∂ẋµ

)

= −2
dL

dλ

∂L

∂ẋµ

Again, if we choose the affine parameter λ to be linear in τ we have that the right hand side
becomes

dL

dλ
=

d

dλ

(

c
dτ

dλ

)

= 0

So, for a massive particle it makes sense to choose λ = τ . Finally we, can rederive the geodesic
equation from the action principle as above, but in the presence of a gravitational field. We
now have

S = m
∫

dλgµν
dxµ

dλ

dxν

dλ
= m

∫

dλL2

and can apply the Euler-Lagrange equation to obtain the Geodesic equation in a general frame.

5 Coordinate Transformations and Metrics

We have seen that coordinate transformations to accelerated reference frames lead to non-
trivial geodesic equations. We have considered one such transformation when deriving the
gravitational redshift. Let us now look at coordinate transformations in more detail.

You have extensively studied coordinate transformations between inertial reference frames
(in the absence of gravitational fields) in Special Relativity. For example, consider a coordinate
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transformation along the z-axis from a stationary frame to one moving at a velocity v. We
have that the coordinate transformation can be expressed in a matrix form as











x̃0

x̃1

x̃2

x̃3











=











γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ





















x0

x1

x2

x3











where β = v/c and γ = 1/
√
1− β2. This coordinate transformation is of the form

x̃µ = x̃µ(xν)

and given that it is linear, we have that the Jacobian is simply:

∂x̃µ

∂xν
=











γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ











Now, in special relativity we have that the space time interval

ds2 = −c2dt2 + (dx1)2 + (dx2)2 + (dx3)2

is invariant under coordinate transformations. We can restate this as

ds2 = ηαβdx
αdxβ = ηαβdx̃

αdx̃β

in other words, the transformation leaves the actual form of the space time interval invariant.
What happens if we now consider a coordinate transformation to an accelerating refer-

ence frame? Let us consider the simplest case, an accelerating reference frame, with accelera-
tion g, along the x3 direction. We have that the transformation between the old coordinates,
(x0, x1, x2, x3) and the new coordinates, (x̃0, x̃1, x̃2, x̃3), is given by

x0 =
c2

g
e

gx̃3

c2 sinh(
g

c2
x̃0)

x1 = x̃1

x2 = x̃2

x3 =
c2

g
e

gx̃3

c2 cosh(
g

c2
x̃0)

We can transform the expression for the space-time interval to the new coordinate system:

ds2 = ηαβdx
αdxβ = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

= −e2
gx̃3

c2 (dx̃0)2 + (dx̃1)2 + (dx̃2)2 + e2
gx̃3

c2 (dx̃3)2

Note that the equivalent gravitational potential has the form Φ = gx̃3 and so the interval takes
the form

ds2 = −e2
Φ

c2 (dx̃0)2 + (dx̃1)2 + (dx̃2)2 + e2
Φ

c2 (dx̃3)2 (5)



General Relativity and Cosmology 14

In fact, this expression is valid in a more general setting than just a constant gravitational
acceleration. A weak, static gravitational field, Φ is equivalent to a metric of this form.

For the remainder of this section let us familiarize ourselves a bit more with coordinate
transformations and how they affect the metric. With a general coordinate transformation,
x̃α = x̃α(xβ) we find that the space time interval changes as

ds2 = ηαβdx
αdxβ = ηαβ

∂xα

∂x̃µ

∂xβ

∂x̃ν
dx̃µdx̃ν ≡ gµνdx̃

µdx̃ν

In other words, under a general coordinate transformation, we have that ηµν → gµν . We call
the object gµν the metric.

The metric contains information about the geometry of space (and space-time) we are
considering. It is instructive to work through a few examples. For example, consider a 2-D
sheet plane, with coordinates (x, y). The interval on that plane is given by

ds2 = dx2 + dy2

and hence the metric is very simple: it is a diagonal matrix with entries

gij =

(

1 0
0 1

)

We can transform to polar coordinates

x = r cos θ

y = r sin θ

to find

ds2 = dr2 + r2dθ2

Note that now the metric is more complicated:

gij =

(

1 0
0 r2

)

yet it still describes a plane. We could have considered a different surface, a sphere with unit
radius. It is a two dimensional surface and hence needs two coordinates, (θ, φ). The infinitesimal
interval is defined as

ds2 = dθ2 + sin2(θ)dφ2

with metric

gij =

(

1 0
0 sin2(θ)

)

The geometry of the surface of a sphere is obviously very different to the geometry of a plane
and it is in the metric that this information is encoded.
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We are of course, interested in the geometry of 3-D space and of 4-D space time. So, for
example, the interval (and metric) for Euclidean (or flat) 3-D space in Cartesian coordinates
are

ds2 = (dx1)2 + (dx2)2 + (dx3)2

and

gij =







1 0 0
0 1 0
0 0 1







In spherical coordinates

x1 = r sin(θ) cos(φ)

x2 = r sin(θ) sin(φ)

x3 = r cos(θ)

we have that the interval (and metric) are

ds2 = dr2 + r2dθ2 + r2 sin2(θ)dφ2

and

gij =







1 0 0
0 r2 0
0 0 r2 sin2(θ)







Again, these two metrics (in Cartesian and spherical coordinates) describe exactly the same
space.

We have already seen examples of space-time metrics above. The Minkowski metric and
the metric of an accelerated observer (known as a Rindler metric).

Let us now consider two important metric. The first one is that of a Euclidean, homogeneous
and isotropic spacetime. We have that

ds2 = −c2dt2 + a2(t)
[

(dx1)2 + (dx2)2 + (dx3)2
]

(6)

which has a metric

gµν =











−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)











A particularly important metric is a static (i.e. time independent), spherically symmetric
Schwarzschild metric:

ds2 = −
(

1− 2GM

c2r

)

c2dt2 +
(

1− 2GM

c2r

)−1

dr2 + r2dθ2 + r2 sin2(θ)dφ2 (7)
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which has a metric

gµν =















−
(

1− 2GM
c2r

)

0 0 0

0
(

1− 2GM
c2r

)−1
0 0

0 0 r2 0
0 0 0 r2 sin2(θ)















This metric is of particular importance. It corresponds to the space time of a point like mass
and can be used to describe the space time around stars, planets and black holes.

To finish, let us calculate the geodesics for the homogeneous metric to find out what the
connection coefficients are. The action is:

L2 = −c2ṫ2 + a2(t)
∑

(ẋi)2

where ḟ = df
dλ
. The Euler-Lagrange equations are:

ẍ0 +
a

c

da

dt

∑

(ẋi)2 = 0

ẍi + 2
1

ac

da

dt
ẋ0ẋi = 0

We can now read off the connection coefficients (and be careful not to over count with the
factor of 2 in the second expression):

Γ0
ij =

1

c
a
da

dt
δij

Γi
0j =

1

ac

da

dt
δij

6 The Newtonian Limit and the Gravitational Redshift

Revisited

Interestingly enough, with what we have done we can already start relating the geodesic equa-
tion with the Newtonian regime of gravity. Let us look at the case where the gravitational field
is extremely weak and stationary and particles are moving at non-relativistic speeds so v ≪ c.
Let us start with the geodesic equation:

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0

The non-relativistic approximation means that dxi/dτ ≪ d(ct)/dτ so the geodesic equation
simplifies to

d2xµ

dτ 2
+ Γµ

00

(

dx0

dτ

)2

≃ 0

If the gravitational field is stationary we have that ∂gµν/∂t = 0 and we have

Γµ
00 = −1

2
gµλ

∂g00
∂xλ
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Now consider a weak field

gµν = ηµν + hµν

where we assume that |hµν | ≪ 1. We can expand Γµ
00 to first order in hµν to find

Γµ
00 = −1

2
ηµν

∂h00

∂xν

Only the spatial parts of ηµν survive (which are 1). Hence we have

Γµ
00 = −1

2

∂h00

∂xµ

The geodesic equation then becomes

d2xµ

dτ 2
=

1

2

(

dx0

dτ

)2
∂h00

∂xν

which in vectorial notation becomes

d2r

dτ 2
=

1

2

(

dx0

dτ

)2

∇h00

For small speeds dt/dτ ≃ 1 and comparing with the Newtonian result d2r
dt2

= −∇Φ we see that

h00 = −2Φ

c2

Hence in the weak-field limit

g00 = −
(

1 +
2Φ

c2

)

Note that, if we take the metric that we found in equation 5 and expand to linear order (i.e.
take the weak field limit), we get exactly the same expression.

We can rederive our expression for the gravitational redshift directly from the metric. Con-
sider the proper time again

−ds2 = c2dτ 2 = −gµνdx
µdxν

and pick a stationary system so dxi = 0. We then have

dτ =
√−g00dt.

In the weak field case we have

dτ ≃
(

1 +
Φ

c2

)

dt
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Note that t and τ only coincide if Φ = 0 so clocks run slowly in potential wells. We can now
compare the rate of change at two points, A and B, to get

dτA
dτB

=

√

√

√

√

g00(A)

g00(B)

which in the weak field limit gives the ratio of frequencies

νB
νA

=
dτA
dτB

≃ 1− ΦB − ΦA

c2

which is equivalent to the expression we found in Section 3. We can define the gravitational
redshift

zgrav ≡
νA − νB

νA
=

ΦB − ΦA

c2

This is a very small effect- for the Sun it is ∼ 10−6.
One way to look for this effect is by studying the spectral lines emitted from atoms which

are very close to a massive body and hence deep into a gravitational potential. This effect
has been observed in the Sun and white dwarfs but these observations are not very accurate.
A classic test of the gravitational redshift was undertaken by Pound and Rebka in 1960 at
Harvard. They used a 22.5 metre high tower where they placed an unstable nucleus, Fe57

at the top and the bottom. The nucleus (at the top) would emit gamma-rays with a certain
frequency related to their energy. These rays would fall to the bottom and interact with the
Fe57 there. If the gamma rays of the observer were the same as the emitter, the Fe57 at the
bottom of the shaft would react. But because of the gravitational redshift, the frequency was
shifted and the absorption was less efficient. By changing the velocity of the source at the top
of the tower, the experimenters could compensate for the gravitational effect and measure it to
within 1%.

Better measurements of the gravitational redshifting of light can be obtained on (or near) the
Earth where, even though the gravitational field is much, much weaker, there is the possibility
to make very precise measurements. One way to do this is to send a rocket up into orbit with
a hydrogen-maser clock and emitting pulses to a ground station. At an altitude of 104 Km, the
change in gravitational potential will be gh/c2 ≃ 10−10. Note that this effect is minute, almost
5 orders of magnitude smaller than the simple Doppler effect due to the motion of the rocket.
Yet it is still possible to constrain the effect to within 0.002%.

7 Orbits I: the Perihelion of Mercury

It is now time to revisit the two body problem. We have already worked this out for the
Newtonian case but we can now see what happens if we consider the more general case. Strictly
speaking we will be studying the motion of mass µ in a central potential sourced by a mass M .

We can use the Schwarzschild metric that we introduced in equation 7 of the previous
section. The total mass is M and the reduced mass is µ. The action for the geodesic equation
for (t(λ), r(λ), θ(λ), φ(λ)) in this metric is

L2 =
(

1− 2GM

rc2

)

c2ṫ2 − ṙ2

1− 2GM
rc2

− r2(θ̇2 + sin2 θφ̇2)
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The angular Euler-Lagrange equations are exactly as in the Newtonian two body problem we
previously solved

d

dλ
(2r2θ̇) = 2r2 sin θ cos θφ̇2

d

dλ
(2r2 sin2 θφ̇) = 0

and we can solve them in the same way, placing the orbit on the equatorial plane, choosing
integration constants such that θ̇ = 0 so that

r2φ̇ =
J

µ

The timelike component of the geodesic obeys

d

dλ

[

c2
(

1− 2GM

rc2

)

ṫ
]

= 0

which can be integrated to give
(

1− 2GM

rc2

)

ṫ = k

For a massive particle we have L2 = c2

c2 =
c2k2 − ṙ2
(

1− 2GM
c2r

) − J2

µ2r2

which can be rewritten

ṙ2 +
(

1− 2GM

c2r

)

J2

µ2r2
= c2k2 − c2 +

2GM

r

Rearranging we find

ṙ2 +
J2

µ2r2
− 2GM

r
− 2GMJ2

µ2r3c2
= constant (8)

We can compare this expression with the one we found in the Newtonian case in equation 2:

ṙ2 +
h2

r2
− 2GM

r
= constant

There is an extra term in the General Relativistic case. Furthermore, in the Newtonian case
we are taking derivatives with regards to t while in the General Relativistic case we are using
the affine parameter λ.

We would now like to find the orbits of motion in this system. As in the Newtonian case,
using conservation of angular momentum we can change the independent variable from λ to φ.
Furthermore, we can transform to u = 1/r so that

ṙ =
dr

dφ

dφ

dλ
= − 1

u2

du

dφ

J

µ
u2 = −J

µ

du

dφ
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Dividing through by J2/µ2, equation 8 becomes
(

du

dφ

)2

+ u2 − 2GMµ2

J2
u− 2GM

c2
u3 = constant

Differentiating by φ and dividing by 2 du
dφ

we find

d2u

dφ2
+ u =

Gmµ2

J2
+

3GM

c2
u2

You will see that this equation has a very similar form to equation 3 with an extra bit. It is
useful to rescale u so as to assess how important the correction is. Define U = J2

GMµ2u. We then
have

d2U

dφ2
+ U = 1 + ǫU2 (9)

with ǫ ≡ 3G2M2µ2/J2c2. We will see that ǫ in the case of Mercury, is of order 10−7, so very
small. We therefore assume that U can be split into a Newtonian part, U0 and a small, general
relativistic correction, U1. We have that U0 = 1 + e cos(φ) which we can plug into equation 9
to find (to lowest order):

d2U1

dφ2
+ U1 = ǫU2

0 = ǫ[1 + 2e cos(φ) + e2 cos2(φ)] = ǫ[1 +
e2

2
+ 2e cos(φ) +

e2

2
cos(2φ)]

The complementary function is as before but the particular integral takes the form

U1 = ǫ

[(

1 +
e2

2

)

+ eφ sin(φ)− e2

6
cos(2φ)

]

With time, the dominant term will be proportional to φ so that, adding the complementary
function and the particular integral we have

U ≃ 1 + e cos(φ) + ǫeφ sin(φ)

This corresponds to the Taylor expansion of

U ≃ 1 + e cos[φ(1− ǫ)]

I.e. the period of the orbit is now 2π/(1− ǫ) and not 2π. The orbit does not close in on itself.
We can work out what this correction is for Mercury. Taking M ≃ 2 × 1030 kg, the orbital
period T = 88 days and the mean orbital radius r = 5.8 × 1010 m, we find ǫ ≃ 10−7 so that
precession rate is approximately 43 arc seconds per century. This effect, first detected by Le
Verrier in the mid 19th century is obscured by a number of other effects. The precession of the
equinoxes of the coordinate systems contributes to about 5025” per century while the other
planets contribute about 531” per century. The Sun also has a quadropole moment which
contributes a further 0.025” per century. Taking all these effects into account still leaves a
precession of △θ for which the current best estimate is

△θ = 42.969”± 0.0052” per century

The prediction from General Relativity is

△θ ≃ 42.98” per century
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8 Orbits II: Gravitational Lensing and the Shapiro Time

Delay

We now want to study what happens to a light ray propagating in a gravitational field. We first
work out what happens in a Newtonian universe; we are going to model a photon as a massive
particle travelling at the speed of light, c with angular momentum per unit mass h = cR. Recall
that u = 1/r satisfies

d2u

dφ2
+ u =

GM

h2
=

GM

c2R2

We have solved it before for closed orbits but we now want to pick integration constants that
lead to unbounded orbits:

u =
sinφ

R
+

GM

c2R2

where R is the distance of closest approach in the absence of gravity. Consider the asymptotic
behaviour: when r → ∞ we have u → 0 which gives us two solutions for φ: φ− = −GM/(c2R)
and φ+ = π +GM/(c2R). The total deflection is

∆φN =
2GM

c2R

We can now repeat the calculation for in the relativistic case. As in Section 7, we have that
the geodesic equation for a light ray must be parametrized in terms of an affine parameter and
not proper time. We can use some of the results found in 7 (and, once again, taking θ = π/2)

r2φ̇ = h
(

1− 2GM

rc2

)

ṫ = k

For a massless particle we have L2 = 0

0 =
(

1− 2GM

c2r

)

c2ṫ2 − ṙ2
(

1− 2GM
c2r

) − h2

r2

which can be rewritten in terms of u as

h2

(

du

dφ

)2

= c2k2 − h2u2 +
2GM

c2
h2u3

which, when differentiated gives

d2u

dφ2
+ u =

3GM

c2
u2

Again, we can treat the right hand side as a small perturbation to the orbit

u0 =
sinφ

R
(10)



General Relativity and Cosmology 22

This equation corresponds to a straight line. The first order equation is

d2u1

dφ2
+ u1 =

3GM

c2R2
sin2 φ =

3GM

2c2R2
(1− cos 2φ)

which combined with u0 leads to the complete, first order, solution

u =
sin φ

R
+

3GM

2c2R2

(

1 +
1

3
cos 2φ

)

At large distances, u → 0 and assuming sinφ ≃ φ we have two possible solutions for φ:
φ− = −2GM

c2R
and φ+ = π + 2GM

c2R
. The total deflection is then

∆φGR =
4GM

c2R

We find that ∆φGR = 2∆φN .
For a light ray grazing the limb of the Sun, the deflection will be θ ≃ 1.75”, famously

measured by Arthur Eddington during his Eclipse expedition in 1919. The tightest observa-
tional constraint come from observations due to Shapiro, David, Lebach and Gregory who used
around 2500 days worth of observation taken over 20 years- they used 87 VLBI sites and 541
radio sources yielding more than 1.7× 106 observations and and obtained a constraint on θ:

θ = (0.99992± 0.00023)× 1.75′′

which is 3 orders of magnitude better than Eddington’s original observations.
Another relativistic effect involving light rays is the Shapiro time delay, first proposed in

1964. Again, take the Schwarzschild metric in the equatorial plane and apply to electromagnetic
wave (radar) propagating at the speed of light. We have that ds2 = 0 so

0 =
(

1− 2GM

c2r

)

c2dt2 − dr2
(

1− 2GM
c2r

) − r2dφ2

Take the unperturbed solution, given in equation 10. We have

−dr

r2
=

cos(φ)

R
dφ

which can be used to find

r2dφ2 = dr2 tan2 φ =
R2dr2

r2 − R2

The metric can then be rewritten as

c2dt2 = dr2
[

(

1− 2GM

c2r

)−2

+
(

1− 2GM

c2r

)−1 R2

r2 − R2

]

We can now expand to first order in GM/(rc2) to find

cdt = ± rdr√
r2 − R2

[

1 +
2GM

rc2
− GMR2

r3c2

]
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This expression can be easily integrate between points A and B to give

c∆t = ±




√
r2 − R2 +

2GM

c2
ln





√

r2

R2
− 1 +

r

R



− GM

c2

√

1− R2

r2





B

A

(11)

We can now apply this to a planetary system. Let us take A to be the Earth and B to be
Venus. The expression in equation 11 for ∆t is the coordinate elapsed, not the time elapsed on
the Earth, ∆τ . To relate these two time intervals recall that

ds2 = −c2dτ 2

where dτ is the proper time elapsed at on the Earth. We can assume a circular orbit so that
dr = dθ = 0 but clearly we have dφ 6= 0. We are then left with

c2dτ 2 =
(

1− 2GM

c2rE

)

c2dt2 − r2dφ2

where rE is the Earth-Sun distance. We can simplify to

dτ =

√

√

√

√1− 2GM

c2rE
− r2

c2

(

dφ

dt

)2

dt

On a circular orbit we can use Kepler’s law

(

dφ

dt

)2

=
GM

r3

so we find

∆τ =

√

1− 2GM

c2rE
− GM

c2rE
∆t =

√

1− 3GM

c2rE
∆t ≃

(

1− 3GM

2c2rE

)

∆t

To understand what one should expect, take r ≫ R and look at the expression to see which
term dominates as R → 0. The logarithmic term will diverge so that, when a light ray passes
close to the source, there is a large time delay. So, by monitoring a regular pulse of light as
it passes behind a massive body, one should see a large include in the period, a characteristic
spike during the transit. Shapiro proposed an experiment where one would send light rays
(or radar signals) from the Earth which would then be reflected off Venus and back. If the
Earth and Venus are aligned, the Sun induces an effect on the order of microseconds. In fact,
when receiving signals from distant satellites such Voyager and Pioneer, one has to include the
Shapiro time delay effect in processing their signals. The best constraints are due to Bertotti,
Iess and Tortora using radio links with Cassini in 2002 which give us

△t = (1.00001± 0.00001)△tGR

where △tGR is the prediction from General Relativity.
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9 The Equivalence Principle and General Covariance

The Equivalence Principle has led us to move away from preferred frames or even preferred
coordinate systems. A modern theory of gravity must take that into account, i.e. it should be
possible to write the laws of physics in a form which is true in any coordinate system. This is
known as the Principle of General Covariance.

To implement General Covariance we have to learn a little bit more about geometry. For a
start let us recall how we transform between different coordinate systems. Consider a coordinate
transformation x̃µ = x̃µ(xν). The Jacobian matrix of the transformation is defined to be

∂x̃µ

∂xν

Given another coordinate transformation x̄µ = x̄µ(x̃ν), we can apply the chain rule to get:

∂x̄µ

∂xν
=

∂x̄µ

∂x̃α

∂x̃α

∂xν

and

∂xµ

∂x̃α

∂x̃α

∂xν
= δµν

How do different types of functions of xµ transform under coordinate transformations. The
simplest case is a scalar field, φ(xµ)- it remains unchanged under a coordinate transformation.
A simple example of a scalar is dτ , which we used in Section 4 to construct the invariant action
for the geodesic.

The next type of functions are vectors fields. Consider a curve in space time, parametrized
by λ so xα = xα(λ). The tangent vector field is given by

T α =
dxα

dλ

Suppose we now change coordinates to x̃α. We now have that the tangent vector in these new
coordinates is

T̃ α =
dx̃α

dλ
. (12)

Using the chain rule we have

dx̃α

dλ
=

∂x̃α

∂xβ

dxβ

dλ

So the tangent vector field transforms as

T̃ α =
∂x̃α

∂xβ
T β

A vector field with the indices ”up” (and which therefore transforms in this way) is known as
a contravariant vector field.
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There is a different type of vector field, with an index ”down” which is known as a covariant
vector field. An example is

Fα =
∂f

∂xα

i.e. the gradient of a function f(x). The chain rule gives

∂f

∂xα
=

∂x̃β

∂xα

∂f

∂x̃β

So definining

F̃α =
∂f

∂x̃α

we have

F̃α =
∂xβ

∂x̃α
Fβ

Note how the transformation matrix is the inverse of the one for contravariant tensors. This
of course, means that if you contract something with an ”up” index with something with a
”down” index you have

T̃ αF̃α =
∂x̃α

∂xβ

∂xγ

∂x̃α
T βFγ = δγβT

βFγ = T βFβ

i.e. the resulting object is a scalar and unchanged by a coordinate transformation.
It should be obvious that we can generalize this to objects with arbitrary number of ”up”

and ”down” indices. These objects are known as tensors. We have already had to deal with
one of them, the metric. The metric is a 2nd rank tensor and transforms as

g̃αβ =
∂xµ

∂x̃α

∂xν

∂x̃β
gµν

We can also define the inverse of the metric which is simply the contravariant version of the
metric, gαβ and satisfies:

gαµgµβ = δαβ

We can generalize to an arbitrary tensor. For example a 2nd rank contravariant tensor will
be represented as Mαβ , a 2nd rank covariant tensor will be of the form Nαβ and a 2nd rank
mixed tensor will have the form Oα

β . We can have higher order tensors (and we will come
across one later on). For example a 4th order mixed rank tensor will be of the form Rα

βµν .
We have now constructed this array of objects and wish to do operations on them. The

most important operation we need to do is differentiation. Let us see why we can’t use normal
derivatives. We’ve already seen that Fα = ∂f

∂xα transforms in the correct way. Let us now
consider the 2nd derivative of Fα:

∂Fα

∂xβ
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Again let us consider a change of coordinates:

∂Fα

∂xβ
=

∂2f

∂xα∂xβ
=

∂x̃γ

∂xα

∂

∂x̃γ

(

∂x̃δ

∂xβ

∂f

∂x̃δ

)

=
∂x̃γ

∂xα

∂x̃δ

∂xβ

∂2f

∂x̃γ∂x̃δ
+

∂2x̃δ

∂xα∂xβ

∂f

∂x̃δ

If we were working with a covariant tensor we wouldn’t have the extra term. So the normal,
2nd derivative of a scalar (i.e. the Hessian) is not a 2nd covariant tensor.

We can define the covariant derivative, ∇α which obeys the following properties

• ∇αf = ∂f
∂xα

• It obeys the Liebnitz rule

∇α(MN) = (∇αM)N +M(∇αN)

for any two tensors M and N (we have hidden the indices).

• ∇α commutes with contractions between indices.

We can construct such an operator as follows. It is a normal derivative when applied to a
scalar. Applied to contravariant or covariant vector fields it acts as

∇αV
β = ∂αV

β + Γβ
αµV

µ

∇αUβ = ∂αUβ − Γµ
αβUµ

The objects that we have denoted by Γµ
αβ are exactly the connection coefficients that we came

across when constructing the geodesic equations. We can use them to construct the covariant
derivatives of 2nd rank tensors too. So, for example we have

∇αMµν = ∂αMµν − Γβ
αµMβν − Γβ

ανMµβ

∇αN
µν = ∂αN

µν + Γµ
αβN

βν + Γν
αβN

µβ

∇αO
µ
ν = ∂αO

µ
ν + Γµ

αβO
β
ν − Γβ

ανO
µ
β

Finally, the covariant derivative constructed in this way satisfies the metricity condition:

∇αgµν = 0

Now let us revisit our curve on space-time xα = xα(λ). We can define the absolute derivative
of a vector V µ along that path to be

DV µ

Dλ
≡ T α∇αV

µ

where the tangent vector T α is defined in equation 12. We say that the vector V µ is parallely
transported along that path if

DV µ

Dλ
= 0
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This is a differential equation for V µ. We can start at a point xα(λ = 0) and integrate to find
the value V µ at, for example, the point xα(λ = 1). The result is path dependent. The parallel
transport equation applied to T α is

DT α

Dλ
= 0

can be rewritten as

d2xα

dλ2
+ Γα

µν

dxµ

dλ

dxν

dλ
= 0

Note that this is nothing more than the geodesic equation we found in equation 4.
We now have the tools to construct laws of physics which are invariant under coordinate

transformations. We need only apply the following two rules:

1. Wherever we see the Minkowski metric, ηαβ, replace by a general metric, gαβ.

2. Wherever we see a partial derivative, ∂
∂xα , replace by a covariant derivative, ∇α.

Let us apply this prescription to Newton’s 2nd law applied in special relativity

d(mV α)

dτ
= F α

If it is to be coordinate invariant, we have

D(mV α)

Dτ
= F α

where the total derivative is defined in terms of the covariant derivative above.

10 The Curvature of Space-Time: Riemann Curvature

Tensor

We have seen in previous lectures that by performing a coordinate transformation, it is possible
to remove the effect of gravity locally. Such a set of coordinates is known as the Local Inertial
Frame (LIF). They are, for example, the fixed coordinates defined relative to an object in free
fall. But given that we can always transform to a LIF, how can we tell if we are in the presence
of a gravitational field?

When we transform to a LIF, we find a coordinate system such that gαβ → ηαβ and the
connection coefficients, Γ (which are built of first derivatives of gαβ) vanish. Hence, the grav-
itational field must arise through second-derivatives of gαβ, i.e. neighbouring points will feel
different accelerations because the connection coefficients differ. We can schematically think of
Γ(x) ∼ ∂αgµν(x) and if we Taylor expand around a point x we have

Γ(x+∆x) ≃ ∂αgµν(x) + ∂β∂αgµν(x)∆xβ

Hence the forces (which come into the geodesic equation via the connection coefficients) will
be different if ∂β∂αgµν(x) 6= 0. This is a 4th rank object although not necessarily a tensor (note
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Figure 3: Parallel transport of vector V

that it is built out of normal derivatives, not covariant ones). We need something of this form
which is a tensor to relate to the gravitational field and we can find it if we revisit our equation
for parallel transport.

Recall that our equation for parallel transport is

DV µ

Dλ
= 0

which can be explicitely written as

dV µ

dλ
= −Γµ

αβ

dxα

dλ
V β

We have then that the change around an infinitesimal length, δxβ is

δV µ = −Γµ
αβV

αδxβ

Let us now parallely transport the vector V µ around a parallelogram with sides δaα and
δbβ. We have that the total change is given by adding up the four contributions:

δV µ = −Γµ
αβ(x)V

α(x)δaβ − Γµ
αβ(x+ δa)V α(x+ δa)δbβ

+Γµ
αβ(x+ δb)V α(x+ δb)δaβ + Γµ

αβ(x)V
α(x)δbβ

Note that we are not progressing sequentially around each corner of the square. We can now
take the Taylor expansion of the middle two terms:

δV µ = −∂(Γµ
αβV

α)

∂xν
δaνδbβ +

∂(Γµ
αβV

β)

∂xν
δaαδbν

If we now relabel the 2nd term, α ↔ ν, then β ↔ α and using the product rule, we have:

δV µ = (∂νΓ
µ
αβV

α + Γµ
αβ∂νV

α − ∂βΓ
µ
ανV

α − Γµ
αν∂βV

α)δaνδbβ

We can now use the parallel transport equation above to replace ∂νV
α and ∂βV

α and we find

δV µ = −Rµ
ναβV

νδaαδbβ
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where

Rµ
ναβ ≡ ∂αΓ

µ
βν − ∂βΓ

µ
αν + Γµ

αǫΓ
ǫ
νβ − Γµ

ǫβΓ
ǫ
να (13)

We have that Rµ
ναβ is the Riemann curvature tensor and it quantifies the curvature of a surface

(in this case space-time). If there was no curvature, the parallel transport around a closed loop
would bring a vector back onto itself. Rµ

ναβ is indeed a 4th rank tensor and depends on the
second derivative. It should therefore be useful for teasing out the effects of a gravitational
field. In fact we can define the Riemann curvature tensor in terms of covariant derivatives and
vectors through:

(∇α∇β −∇β∇α)V
µ = Rµ

ναβV
ν

The Riemann tensor satisfies a number of symmetry properties:

Rµ
ναβ = −Rµ

νβα

Rµναβ = −Rνµαβ

Rµναβ = Rαβµν

Rµ
ναβ +Rµ

αβν +Rµ
βνα = 0

where the first index has been lowered using the metric: Rµναβ = gµǫR
ǫ
ναβ. We also have the

Bianchi identity:

∇γR
µ
ναβ +∇βR

µ
νγα +∇αR

µ
νβγ = 0,

Finally, we can define the Ricci tensor and scalar:

Rαβ ≡ Rµ
αµβ

R ≡ gαβRαβ

11 Building the Einstein Field Equations

We now want to progress to the equations that tell us how the gravitational field is sourced. We
may find a hint of how to construct the field equation from Newtonian gravity. In Newtonian
gravity we have the Poisson equation:

∇2Φ = 4πGρ

Consider now two neighbouring particles, xi and x̃i = xi + N i in this gravitational field.
Newton’s 2nd Law gives us

d2xi

dt2
= −∂iΦ(x)

d2x̃i

dt2
= −∂iΦ(x+N)
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If we take the Taylor expansion of the 2nd equation we have, to lowest order:

d2N i

dt2
= −∂j∂iΦN

j

We can define the tidal tensor:

Eij ≡ ∂j∂iΦ

so that

d2N i

dt2
+ EijN

j = 0

(let us not worry about the fact that ”up” and ”down” indices don’t match just this once).
We can call this the geodesic deviation equation for Newtonian gravity. Now let us revisit the
Poisson equation; we have that it can be rewritten as

Eii = 4πGρ

We can now use this link between the geodesic deviation equation and the Poisson equation
to construct the appropriate field equations for General Relativity. In constructing geodesics,
we saw that the metric, gαβ played the role of gravitational potentials and we now need a set
of equations which are invariant under coordinate transformations. Consider now a family of
geodesics xα(λ, σ). We move along a geodesic by fixing σ and varying λ. We can move from
one geodesic to the next one by fixing λ and varying σ. We have the vector which is tangent
to a given geodesic is simply:

T α =
dxα

dλ
|σ

while the vector which is orthogonal or normal to a geodesic at a point is

Nα =
dxα

dσ
|λ

We have that normal derivatives commute so ∂σT
α = ∂λN

α. We can think of λ as a time coordi-
nate and σ as a spatial coordinate, which means we can pick a coordinate system: (λ, σ, x2, x3).
We then have that the tangent and normal vectors take a particularly simple form:

T α = δα0 Nα = δα1

Again, from the commutation of the normal derivatives we have Nβ∂βT
α−T β∂βN

α = 0 which
remains true if we replace the normal derivatives by covariant derivatives:

Nβ∇βT
α − T β∇βN

α = 0

Take the equation which relates the Riemann curvature tensor with the commutator of covariant
derivatives:

(∇µ∇ν −∇ν∇µ)T
α = Rα

βµνT
β
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Now contract it with Nα and T β:

NµT ν(∇µ∇νT
α −∇ν∇µT

α) = Rα
βµνT

βT νNµ ≡ Eα
µN

µ (14)

We now have that

D2Nα

Dλ2
= T µ∇µ(T

ν∇νN
α)

which we can use the above commutation relation to rewrite as

D2Nα

Dλ2
= T µ∇µ(N

ν∇νT
α)

Using Leibnitz rule we have

D2Nα

Dλ2
= T µNν∇µ∇νT

α + T µ∇µN
ν∇νT

α

If we add this equation to equation 14 (and use the geodesic equation for T α) we find:

D2Nα

Dλ2
+ Eα

βN
β = T µ∇µN

β∇βT
α + T µNβ∇β∇µT

α

= T µ∇µN
β∇βT

α +Nβ∇β(T
µ∇µT

α)−Nβ∇βT
µ∇µT

α

= T µ∇µN
β∇βT

α − T β∇βN
µ∇µT

α = 0

We have then that the geodesic deviation equation in general relativity has a similar form to
that in Newtonian gravity but with a tidal tensor defined in equation 14. Clearly the Riemann
curvature (or some reduced version of it) must play the role that ∇2Φ plays in the Newtonian
gravity. In fact, in the Newtonian limit we have

Eii = Ri
0i0

so the Newton Poisson equation is of the form

RαβT
αT β ≃ 4πGρ

The form of the equation is schematically ”Geometry ≃ Energy”, in other words, the matter
will source the geometry in someway. This is giving us a hint that the general relativistic
equation should be of the form

Rαβ ∼ GTαβ

where Tαβ is a tensor which must be determined by the matter distribution.

12 The Energy-Momentum Tensor

We now need to construct the object, Tαβ which will be used for the General Relativistic Field
equations. Cleary it must involve ρ. From Special Relativity we know that, if we change to a
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moving frame, with velocity v and boost factor, γ, we have that ρ → γ2ρ. Which means that
ρ transforms like a component of a 2nd rank tensor and hence fits nicely in an object such as
Tαβ . A first guess would be

T αβ = ρUαUβ

where Uα is the 4-velocity of the fluid, Uα ≡ γ(c,v). If we take the divergence of this tensor,
we obtain a conservation equation:

∂αT
αβ = 0

Setting γ = 1 we have two familiar conservation equations. First of all, conservation of mass:

∂ρ

∂t
+ ∂i(ρv

i) = 0

and momentum

∂

∂t
(ρvi) + ∂k(ρv

ivk) = 0

The latter equation can be reexpressed as the Euler equation for a pressureless fluid.
We want to represent a more general, perfect fluid, one that include pressure, P and has

a form which is invariant under coordinate transformation- i.e. a proper tensor. This can be
achieved with

T αβ = (ρ+
P

c2
)UαUβ + Pgαβ

where the 4-velocity of the fluid satisfies UαUα = −c2. In the local rest frame of the fluid, we
have U = (c, 0). The energy-momentum conservation equation now becomes

∇αT
αβ = 0

We can construct the energy-momentum tensor for just about anything: vector fields (like the
electric and magnetic fields), gases of particles described by distribution functions, fermions,
scalar fields, etc.

13 The Einstein equations and the Newtonian Limit

Let us now attempt to construct the field equations which are tensorial and which have at most
2nd derivatives. The only tensors at our disposal are, Rαβ, T αβ and gαβ. We also have two
scalars T ≡ gαβT

αβ and the Ricci scalar, R; it turns out that one of these will be redundant in
what follows so we will discard T . The most general equation is

Rαβ = AT αβ +Bgαβ + CRgαβ (15)

where A, B and C are constants. From energy-momentum conservation we have that

∇αT
αβ = 0
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and the metricity condition gives us

∇µg
αβ = 0

If we take the Bianchi identity

∇γR
µ
ναβ +∇βR

µ
νγα +∇αR

µ
νβγ = 0,

contract µ with α and multiply by gνγ we find

2∇νR
ν
β −∇βR = 0 (16)

We can replace this expression in Equation 15 to find C = 1
2
. This allows us to define the

Einstein tensor:

Gαβ ≡ Rαβ − 1

2
gαβR

We are left with two constants A and B so that

Gαβ = AT αβ +Bgαβ

What are these constants? Let us first focus on A. We can get an idea of where they come
from by comparing the field equations with the Newton Poisson equation. To do so we have
to make two approximations. First of all we need to consider the weak field limit of gravity so
that we can expand the metric around a flat space, Minkowski space time:

gµν = ηµν + hµν

where |hµν | ≪ 1. Second, we will consider a time independent source with low speeds. The
energy momentum tensor then becomes

T00 = ρc2 Tij ≃ 0

To first order in hµν the affine connections are

Γα
µν ≃ 1

2
ηαβ(∂µhβν + ∂νhµβ − ∂βhµν)

and the Riemann tensor becomes (note that we can discard products of Γs because they are
2nd order)

Rα
βµν =

1

2
ηαγ(∂β∂µhνγ − ∂γ∂µhνβ − ∂β∂νhµγ + ∂ν∂γhµβ)

The Ricci tensor is then

Rβν = Rα
βαν =

1

2
ηαγ(∂β∂αhνγ − ∂γ∂αhνβ − ∂β∂νhαγ + ∂ν∂γhαβ)
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To find A we will focus on the G00 component of the field equations. This means we need R00.
We have chose a static source so that all derivatives with regards to 0 vanish. This leaves us
with

R00 = −1

2
ηαγ∂γ∂αh00 ≃ −1

2
∇2h00

Now taking g00 ≃ −(1 + 2 Φ
c2
) we have

R00 =
1

c2
∇2Φ

For the Ricci scalar we can do the same. There is a trick we can use: assuming |Tij | ≃ 0 (as
declared above), and setting B = 0 we have |Gij| ≃ 0 and so

Rij ≃
1

2
gijR =

1

2
δijR

The Ricci scalar is

R = gαβRαβ ≃ ηαβRαβ = −R00 +Rii = −R00 +
3

2
R. (17)

So 2R00 = R and G00 = R00 − 1
2
g00R ≃ R00 +R00 = 2R00 We can now replace it all in the field

equations:

2

c2
∇2Φ = Aρc2

If this is to agree with the Poisson equation we must have

A =
8πG

c4

Finally, it is a convention that we have B = −Λ and we call Λ the cosmological constant. We
then have that the Einstein field equations are:

Gαβ =
8πG

c4
T αβ − Λgαβ (18)

We have completed our quest for a new theory of gravity. The set of Einstein Field Equa-
tions given in equations 18 and the geodesic equations, given in equations 4 replace Newton’s
Universal law of gravitation and Newton’s 2nd law. In Einstein’s theory, the picture is different-
as the American physicist John Archibald Wheeler said: ”Space tells matter how to move and
matter tells space how to curve.”

14 Black Holes

We now know how to, given a distribution of mass, derive the corresponding self-consistent
metric. The Einstein Field Equations are, of course, a tangled mess of non-linear equations
with 10 unknown functions of space time. It helps to consider symmetric configurations. We
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now look at one such configuration, that of a spherically symmetric, static metric in vacuum.
If we write such a metric in spherical polar coordinates we have

ds2 = −c2f(r)dt2 + g(r)dr2 − e(r)dtdr + h(r)(dθ2 + sin2 θdφ2)

With a judicious redefinition of r and t we can eliminate e(r) and h(r) and we can then work
with

ds2 = −c2f(r)dt2 + g(r)dr2 + r2(dθ2 + sin2 θdφ2)

We will solve the Einstein Field Equations in empty space, where Tµν = 0. The equations
can be rewritten as Rµν = 0 and so the challenge is to construct the Ricci tensor for such a
space time with

g00 = −f(r)

grr = g(r)

gθθ = r2

gφφ = r2 sin2 θ

There are 9 non-zero connection coefficients and these are:

Γr
00 = −1

2
grr∂rg00 =

1

2

f ′

g

Γ0
0r =

1

2
g00∂rg00 = −1

2

f ′

f

Γr
rr =

1

2
grr∂rgrr =

1

2

g′

g

Γr
θθ = −1

2
grr∂rgθθ = −r

g

Γr
φφ = −1

2
grr∂rgφφ = −r sin2 θθ

g

Γθ
θr =

1

2
gθθ∂rgθθ =

1

r

Γθ
φφ = −1

2
gθθ∂θgφφ = − sin θ cos θ

Γφ
φr =

1

2
gφφ∂rgφφ =

1

r

Γφ
φθ = −1

2
gφφ∂θgφφ =

cos θ

sin θ

We now need expressions for Rµν which are

R00 =
1

2

f ′′

g
+

1

4

f ′f ′

fg
− 1

4

f ′g′

g2
+

1

2r

f ′

g

Rrr =
1

2

f ′′

f
+

1

4

f ′f ′

f 2
− 1

4

f ′g′

fg
+

1

2r

g′

g

Rθθ =
1

g
− 1 +

r

2g

(

f ′

f
− g′

g

)

Rφφ = sin2 θRθθ
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There are no off-diagonal terms and there are only three equations. We can now take the first
two to find

g

f
R00 +Rrr = −1

r

(

f ′

f
+

g′

g

)

= 0

This easily solved to give fg = α where α is a constant. Replacing g in the Rθθ = 0 we find

f + rf ′ = α

which integrated gives us

f = α(1 +
κ

r
)

Matching this expression to the weak field limit (i.e. the Newtonian regime) we find α = 1 and
κ = −2GM/c2r so that the final solution is the Schwarzschild metric:

ds2 = −
(

1− 2GM

c2r

)

c2dt2 +
(

1− 2GM

c2r

)−1

dr2 + r2dθ2 + r2 sin2(θ)dφ2

which we have used extensively throughout these lecture notes.
We have focused on the weak field region of this space time but let us try an understand a

bit more about its peculiarities. For a start, something odd seems to happen at rS = 2GM/c2,
known as the Schwarzschild radius: the metric seems to blow up. Nevertheless we know that
the Ricci tensor is 0 and if we calculate the Riemann tensor we find that

RαβµνRαβµν = 12
r2S
r4

i.e. it is also finite. It turns out that at rS we don’t have a genuine space time singularity but
a coordinate singularity. This doesn’t mean that odd things don’t happen at that, or near that
point.

Let us consider geodesics in this space time. Using the geodesics that we derived above, we
have that the radial equation is

r̈ = −GM

r2
+

h2

r3

(

1− 3GM

c2r

)

We can find the stable minima of the left hand side (to which we can associate circular orbits)
to find that they are at

r =
2h2 ±

√

4h4 − 12r2Sc
2h2

2rSc2

There is clearly a limit of h below which there is no solution and it is given by h2 = 3r2Sc
2.

This corresponds to the Innermost Stable Circular Orbit: rISCO = 3rs. There are no circular
orbits with smaller radii, all orbits are inspiralling towards rS. Interestingly enough, outside
this orbit, circular orbits do satisfy Kepler’s law: (dφ/dt)2 = GM/r3.
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Let us now study what happens to an infalling particle. We can set h = 0 to find

r̈ = −rSc
2

2r2

Taking ṙ = 0 at r → ∞ we find an integral of motion

ṙ2 =
rSc

2

2r

Integrating this equation, taking τ = 0 at r = r0 and defining ξ = r/rS we find

cτ

rS
=

2

3
(ξ

3/2
0 − ξ3/2)

Taking xi = 0 we find that it take a finite amount of proper time for a particle to reach r = 0
from any radius (within or without the Schwarazschild radius). If, however, we wish to find
the amount of time elapsed for an observer at infinity, we need to integrate

dr

dt
= −

(

rsc
2

r

)1/2 (

1− rS
r

)

which gives

ct

rS
=

2

3
(ξ

3/2
0 − ξ3/2) + 2(ξ

1/2
0 − ξ1/2) + ln

∣

∣

∣

∣

∣

∣

(ξ1/2 + 1)(ξ
1/2
0 − 1)

(ξ1/2 − 1)(ξ
1/2
0 + 1)

∣

∣

∣

∣

∣

∣

If we the endpoint to be the Schwarzschild radius (i.e. ξ = 1), we have that ct → ∞. In other
words, from an external observer it takes an infinite amount of time for the particle to fall in.

We can solve the geodesic equations for radial light rays by looking directly at the metric.
We then have

(

1− rS
r

)1/2

cdt = ±
(

1− rS
r

)−1/2

dr

which can be rewritten as

c
dt

dr
= ±(1− rS

r
)−1

and integrated to give

ct = ±r ± rs ln |
r

rS
− 1|+ r0

where r0 is a constant of integration. With rS we have the usual light cones with which we are
familiar in Minkowski space. This is also approximately true for r/rS ≫ 1. But for r/rS, the
light cone ”tips over” so that all forward moving particles necessarily move inwards towards
r = 0. It is not possible to causally exit the Schwarzschild radius. The Schwarzschild radius
works as a horizon beyond which we can’t see anything. It is an event horizon.
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Finally, such strong effects may still be at play even if the object is not a black hole. Very
dense objects like neutrons stars can be a good laboratory for testing gravity. And indeed,
Binary pulsars are incredibly useful astronomical objects that can be used to place very tight
constraints on General Relativity. Pulsars are rapidly rotating neutrons stars that emit a beam
of electromagnetic radiation, and were first observed in 1967. When these beams pass over the
Earth, as the star rotates, we detect regular pulses of radiation. The first pulsar observed in
a binary system was PSR B1913+16 in 1974, by Hulse and Taylor. The rotational period of
this pulsar is about 59ms as it orbits around another neutron star. Binary pulsars are highly
relativistic. For example the Hulse-Taylor pulsar precesses relativistically more than 30 000
times faster than the Mercury-Sun system. They are also a source of gravitational radiation,
i.e. waves in space time that propagate away from the system and take energy away. We can
predict how much energy in gravitational radiation a binary system will emit, in the context
of General Relativity- it agrees almost perfectly with the angular momentum decay observed
in the Hulse-Taylor pulsar. Indeed the Hulse-Taylor pulsar is an incredibly rich laboratory
for General Relativity. At least 5 General Relativistic effects have been measured: orbital
precession (also known as periastron advance), the rate of change of the orbital period, the
gravitational redshift and two versions of the Shapiro time-delay effects.

15 Homogeneous and Isotropic Space- Times

The Einstein Field Equations are a tangled mess of ten nonlinear partial differential equations.
They are incredibly hard to solve and for almost a century there have been many attempts
at finding solutions which might describe real world phenomena. For the remainder of these
lectures we are going to focus on one set of solutions which apply in a very particular regime.
We will solve the Field Equations for the whole Universe under the assumption that it is
homogeneous and isotropic.

For many centuries we have grown to believe that we don’t live in a special place, that
we are not at the center of the Universe. And, oddly enough, this point of view allows us to
make some far reaching assumptions. So for example, if we are insignificant and, furthermore,
everywhere is insignificant, then we can assume that at any given time, the Universe looks
the same everywhere. In fact we can take that statement to an extreme and assume that at
any given time, the Universe looks exactly the same at every single point in space. Such a
space-time is dubbed to be homogeneous.

There is another assumption that takes into account the extreme regularity of the Universe
and that is the fact that, at any given point in space, the Universe looks very much the same
in whatever direction we look. Again such an assumption can be taken to an extreme so that
at any point, the Universe look exactly the same, whatever direction one looks. Such a space
time is dubbed to be isotropic.

Homogeneity and isotropy are distinct yet inter-related concepts. For example a universe
which is isotropic will be homogeneous while a universe that is homogeneous may not be
isotropic. A universe which is only isotropic around one point is not homogeneous. A universe
that is both homogeneous and isotropic is said to satisfy the Cosmological Principle. It is
believed that our Universe satisfies the Cosmological Principle.

Homogeneity severely restrict the metrics that we are allowed to work with in the Einstein
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field equation. For a start, they must be independent of space, and solely functions of time.
Furthermore, we must restrict ourselves to spaces of constant curvature of which there are only
three: a flat euclidean space, a positively curved space and a negatively curved space. We will
look at curved spaces in a later lecture and will restrict ourselves to a flat geometry here.

The metric for a flat Universe takes the following form:

ds2 = −c2dt2 + a2(t)[(dx1)2 + (dx2)2 + (dx3)2]

We call a(t) the scale factor and t is normally called cosmic time or physical time. The energy
momentum tensor must also satisfy homogeneity and isotropy. If we consider a perfect fluid,
we restrict ourselves to

T αβ = (ρ+
P

c2
)UαUβ + Pgαβ

with Uα = (c, 0, 0, 0) and ρ and P are simply functions of time. Note that both the metric and
the energy-momentum tensor are diagonal. So

g00 = −1 gij = a2(t)δij

T00 = ρc2 Tij = a2Pδij

As we shall see, with this metric and energy-momentum tensor, the Einstein field equations are
greatly simplified. We must first calculate the connection coefficients. We have that the only
non-vanishing elements are (and from now one we will use . = d

dt
i.e. not to be confused with

d
dλ

that we have used previously for the geodesic equations):

Γ0
ij =

1

c
aȧδij

Γi
0j =

1

c

ȧ

a
δij

and the resulting Ricci tensor is

R00 = − 3

c2
ä

a
R0i = 0

Rij =
1

c2
(aä + 2ȧ2)δij

Again, the Ricci tensor is diagonal. We can calculate the Ricci scalar:

R = −R00 +
1

a2
Rii =

1

c2

[

6
ä

a
+ 6

(

ȧ

a

)2
]

to find the two Einstein Field equations:

G00 = R00 −
1

2
Rg00 =

8πG

c4
T00 ⇔ 3

(

ȧ

a

)2

= 8πGρ

Gij = Rij −
1

2
Rgij =

8πG

c4
Tij ⇔ −2aä− ȧ2 =

8πG

c2
a2P
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We can use the first equation to simplify the 2nd equation to

3
ä

a
= −4πG(ρ+ 3

P

c2
)

These two equations can be solved to find how the scale factor, a(t), evolves as a function of
time. The first equation is often known as the Friedman-Robertson-Walker equation or FRW
equation and the metric is one of the three FRW metrics. The latter equation in ä is known as
the Raychauduri equation.

Both of the evolution equations we have found are sourced by ρ and P . These quantities
satisfy a conservation equation that arises from

∇αT
αβ = 0

and in the homogeneous and isotropic case becomes

ρ̇+ 3
ȧ

a
(ρ+

P

c2
) = 0

It turns out that the FRW equation, the Raychauduri equation and the energy-momentum
conservation equation are not independent. It is a straightforward exercise to show that you
can obtain one from the other two. We are therefore left with two equations for three unknowns.

One has to decide what kind of energy we are considering and in a later lecture we will
consider a variety of possibilities. But for now, we can hint at a substantial simplification. If
we assume that the system satisfies an equation of state, so P = P (ρ) and, furthermore that it
is a polytropic fluid we have that

P = wρc2 (19)

where w is a constant, the equation of state of the system.

16 Properties of a Friedman Universe I

We can now explore the properties of these evolving Universes. Let us first do something very
simple. Let us pick two objects (galaxies for example) that lie at a given distance from each
other. At time t1 they are at a distance r1 while at a time t2, they are at a distance r2. We
have that during that time interval, the change between r1 and r2 is given by

r2
r1

=
a(t2)

a(t1)

and, because of the cosmological principle, this is true whatever two points we would have
chosen. It then makes to sense to parametrize the distance between the two points as

r(t) = a(t)x

where x is completely independent of t. We can see that we have already stumbled upon x
when we wrote down the metric for a homogeneous and isotropic space time. It is the set of
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coordinates (x1, x2, x3) that remain unchanged during the evolution of the Universe. We known
that the real, physical coordinates are multiplied by a(t) but (x1, x2, x3) are time independent
and are known as conformal coordinates. We can work out how quickly the two objects we
considered are moving away from each other. We have that their relative velocity is given by

v = ṙ = ȧx =
ȧ

a
ax =

ȧ

a
r ≡ Hr

In other words, the recession speed between two objects is proportional to the distance between
them. This equality applied today (at t0) is

v = H0r

and is known as Hubble’s Law where H0 is the Hubble constant and is given by H0 = 100h km
s−1 Mpc−1 and h is a dimensionless constant which is approximately h ≃ 0.7.

How can we measure velocities in an expanding universe? Consider a photon with wave-
length λ being emitted at one point and observed at some other point. We have that the
Doppler shift is given by

λ′ ≃ λ(1 +
v

c
)

We can rewrite it in a differential form

dλ

λ
≃ dv

c
=

ȧ

a

dr

c
=

ȧ

a
dt =

da

a

and integrate to find λ ∝ a. We therefore have that wave lengths are stretched with the
expansion of the Universe. It is convenient to define the factor by which the wavelength is
stretched by

z =
λr − λe

λe
→ 1 + z ≡ a0

a

where a0 is the scale factor today (throughout these lecture notes we will choose a convention
in which a0 = 1). We call z the redshift.

For example, if you look at Figure 4 you can see the spectra measured from a galaxy; a
few lines are clearly visible and identifiable. Measured in the laboratory on Earth (top panel),
these lines will have a specific set of wavelengths but measured in a specific, distant, galaxy
(bottom panel) the lines will be shifted to longer wavelengths. Hence a measurement of the
redshift (or blueshift), i.e. a measurement of the Doppler shift, will be a direct measurement
of the velocity of the galaxy.

The American astronomer, Edwin Hubble measured the distances to a number of distant
galaxies and measured their recession velocities. The data he had was patchy, as you can see
from Figure 5, but he was able to discern a a pattern: most of the galaxies are moving away
from us and the further away they are, the faster they are moving. With more modern data,
this phenomenon is striking, as you can see in the Figure 5. The data is neatly fit by a law of
the form

v = H0r

where H0 is a constant (known as Hubble’s constant). Current measurements of this constant
give us H0 = 67 km s−1 Mpc−1.
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Figure 4: A set of spectra measured in laboratory (top panel) on a distant galaxy (bottom
panel)

Figure 5: The recession velocity of galaxies, Hubble’s data circa 1929 (left) and SN data circa
1995 (right)

17 Energy, Pressure and the History of the Universe

We can now solve the FRW equations for a range of different behaviours. In the final few
lectures we will look, in some detail, at the nature of matter and energy in an expanding
Universe but for now, we will restrict ourselves to describing them in terms of their equation
of state in the form given in equation 19, P = wρc2.

Let us start off with the case of non-relativisticmatter. A notable example is that of massive
particles whose energy is dominated by the rest energy of each individual particle. This kind of
matter is sometimes simply called matter or dust. We can guess what the evolution of the mass
density should be. The energy in a volume V is given by E = Mc2 so ρc2 = E/V where ρ is
the mass density. But in an evolving Universe we have V ∝ a3 so ρ ∝ 1/a3. Alternatively, note
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that P ≃ nkBT ≪ nMc2 ≃ ρc2 so P ≃ 0. Hence, using the conservation of energy equations:

ρ̇+ 3
ȧ

a
ρ =

1

a3
d

dt
(ρa3) = 0

and solving this equation we find ρ ∝ a−3. We can now solve the FRW equation (taking
ρ(a = 1)ρ0):

(

ȧ

a

)2

=
8πG

3

ρ0
a3

a1/2ȧ =
(

8πGρ0
3

)1/2

to find a ∝ t2/3. If a(t0) = 1, where t0 is the time today, we have a = (t/t0)
2/3 You will

notice a few things. First of all, at t = 0 we have a = 0 i.e. there is an initial singularity
known as the Big Bang. Furthermore we have that v = ȧ

a
r = 2

3t0
r. i.e. by measuring Hubble’s

law we measure the age of the Universe. And finally we have that ä < 0 i.e. the Universe is
decelerating.

The case of Relativistic Matter encompasses particles which are massless like photons or
neutrinos. Recall that their energy is given by E = hν = h2π/λ where ν is the frequency and
λ is the wavelength. As we saw in Section 16, wavelengths are redshifted, i.e. λ ∝ a and hence
the energy of an individual particle will evolve as E ∝ 1/a. Once again, the mass density is
given by ρc2 = E/V ∝ 1/(V λ) ∝ 1/(a3a) = 1/a4. So the energy density of radiation decreases
far more quickly than that of dust. We can go another route, using the equation of state and
conservation of energy. We have that for radiation P = ρc2/3, so

ρ̇+ 4
ȧ

a
ρ =

1

a4
d

dt
(ρa4) = 0

which can be solved to give ρ ∝ a−4. We can now solve the FRW equations.

(

ȧ

a

)2

=
8πG

3

ρ0
a4

aȧ =
(

8πGρ0
3

)1/2

to find a ∝ t1/2 or a = (t/t0)
1/2 Once again, the universe is decelerating but now H0 = 1/(2t0).

Note that there is a different relation between H0 and t0 so if we are to infer the age of the
Universe from the expansion rate, we need to know what it contains.

It is straightforward to consider a general w. Energy-momentum conservation gives us

ρ̇+ 3(1 + w)
ȧ

a
ρ =

1

a3(1+w)

d

dt
(ρa3(1+w)) = 0

Note that as w gets smaller and more negative, ρ decays more slowly. We can solve the FRW
equations

(

ȧ

a

)2

=
8πG

3

ρ0
a3(1+w)

a(1+3w)/2ȧ =
(

8πGρ0
3

)1/2
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Figure 6: The energy density of radiation, matter and the cosmological constant as a function
of time

to find a = (t/t0)
2/3(1+w) which is valid if w > −1. For w < −1/3 the expansion rate is

accelerating, not decelerating. For the special case of w = −1/3 we have a ∝ t.
Finally, we should consider the very special case of a Cosmological Constant. Such odd

situation arises in the extreme case of P = −ρc2. You may find that such an equation of state
is obeyed by vaccum fluctuations of matter. Such type of matter can be described by the Λ
we found in equation 18. The solutions are straightforward: ρ is constant, ȧ

a
is constant and

a ∝ exp(Ht).
Throughout this section, we have considered one type of matter at a time but it would make

more sense to consider a mix. For example we know that there are photons and protons in
the Universe so in the very least we need to include both types of energy density in the FRW
equations:

(

ȧ

a

)2

=
8πG

3

(

ρM0

a3
+

ρR0

a4

)

In fact, the current picture of the universe involves all three types of matter/energy we con-
sidered in this section and, depending on their evolution as a function of a, they will dominate
the dynamics of the Universe at different times. In Figure 6 we plot the energy densities as
a function of scale factor and we can clearly see the three stages in the Universe’s evolution:
a radiation era, followed by a matter era ending up with a cosmological constant era more
commonly known as a Λ era.

18 Geometry and Destiny

Until now we have restricted ourselves to a flat Universe with Euclidean geometry. Before we
move away from such spaces let us revisit the metric. We have

ds2 = −c2dt2 + a2(t)(dx2 + dy2 + dz2)

Let us transform to spherical polar coordinates

x = r cosφ sin θ



General Relativity and Cosmology 45

y = r sinφ sin θ

z = r cos θ

and rewrite the metric

ds2 = −c2dt2 + a2(t)(dr2 + r2dθ2 + r2 sin2 θdφ2)

We could in principle work out the FRW and Raychauduri equations in this coordinate system.
Let us now consider a 3 dimensional surface that is positively curved. In other words, it is

the surface of a 3 dimensional hypersphere in a fictitious space with 4 dimensions. The equation
for the surface of a sphere in this 4 dimensional space, with coordinates (X, Y, Z,W ), is

X2 + Y 2 + Z2 +W 2 = R2

Now in the same way that we can construct spherical coordinates in three dimensions, we can
build hyperspherical coordinates in 4 dimensions:

X = R sinχ sin θ cosφ

Y = R sinχ sin θ sinφ

Z = R sinχ cos θ

W = R cosχ

We can now work out the line element on the surface of this hyper-sphere

ds2 = dX2 + dY 2 + dZ2 + dW 2 = R2
[

dχ2 + sin2 χ(dθ2 + sin2 θdφ2)
]

Note how different it is from the flat geometry. If we transform R sinχ into r for it all to agree
we have that

dχ2 =
dr2

R2 − r2

We can now repeat this exercise for 3-D surface with negative curvature- a hyper-hyperboloide
so to speak. In our fictitious 4-D space (not to be confused with space time), we have that the
surface is defined by

X2 + Y 2 + Z2 −W 2 = −R2

Let us now change to a good coordinate system for that surface:

X = R sinhχ sin θ cosφ

Y = R sinhχ sin θ sinφ

Z = R sinhχ cos θ

W = R coshχ

The line element on that surface will now be

ds2 = dX2 + dY 2 + dZ2 + dW 2 = R2
[

dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)
]
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We can replace R sinhχ by r to get

dχ2 =
dr2

R2 + r2

We can clearly write all three space time metrics (flat, hyperspherical, hyper-hyperbolic) in
a unified way. If we take r = R sinχ for the positively curved space and r = R sinhχ for the
negatively curved space we have

ds2 = −c2dt2 + a2(t)

[

d2r

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

(20)

where k is positive, zero or negative for spherical, flat or hyperbolic geometries, and |k| = 1/R2.
We can now repeat the calculation we undertook for a flat geometry and find the con-

nection coefficients, Ricci tensor and scalar and the evolution equations. Take the metric
gαβ = diag(−1, a2

1−kr2
, a2r2, a2r2 sin θ2) and note that for this choice of coordinates, the i and j

labels now run over r, θ and φ. We find that the connection coefficients are:

Γ0
ij =

1

c
aȧg̃ij

Γi
0j =

1

c

ȧ

a
δij

Γi
jk = Γ̃i

jk

where g̃ij and Γ̃ are the metric and connection coefficients of the conformal 3-space (that is of
the 3-space with the conformal factor, a, divided out):

Γ̃r
rr =

kr

1− kr2

Γ̃r
θθ = −r(1− kr2)

Γ̃r
φφ = −(1 − kr2)r sin2(θ)

Γ̃θ
θr =

1

r

Γ̃θ
φφ =

− sin(2θ)

2

Γ̃φ
φr =

1

r

Γ̃φ
θφ =

1

tan(θ)

The Ricci tensor and scalar can be combined to form the Einstein tensor

G00 = 3
ȧ2 + kc2

c2a2

Gij = −2aä + ȧ2 + kc2

c2
g̃ij

(21)
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while the energy-momentum tensor is

T00 = ρc2

Tij = a2P g̃ij

Combining them gives us the Friedman equation

(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2

while the Raychauduri equations remains as

3
ä

a
= −4πG

3
(ρ+ 3

P

c2
)

Let us now explore the consequences of the overall geometry of the Universe, i.e. the term
proportional to k in the FRW equations: For simplicity, let us consider a dust filled universe.
We can see that the term proportional to k will only be important at late times, when it
dominates over the energy density of dust. In other words, in the universe we can say that
curvature dominates at late times. Let us now consider the two possibilities. First of all, let us
take k < 0. We then have that

(

ȧ

a

)2

=
8πG

3
ρ+

|k|c2
a2

When the curvature dominates we have that
(

ȧ

a

)2

=
|k|c2
a2

so a ∝ t. In this case, the scale factor grows at the speed of light. We can also consider k > 0.
From the FRW equations we see that there is a point, when 8πG

3
ρ = kc2

a2
and therefore ȧ = 0

when the Universe stops expanding. At this point the Universe starts contracting and evolves
to a Big Crunch. Clearly geometry is intimately tied to destiny. If we know the geometry of
the Universe we know its future.

There is another way we can fathom the future of the Universe. If k = 0, there is a strict
relationship between H = ȧ

a
and ρ. Indeed from the FRW equation we have

H2 =
(

ȧ

a

)2

=
8πG

3
ρ → ρ = ρc ≡

3H2

8πG

We call ρc the critical density. It is a function of a. If we take H0 = 100hKm s−1 Mpc−1, we
have that

ρc = 1.9× 10−26h2kgm−3

which corresponds to a few atoms of Hydrogen per cubic meter. Compare this with the density
of water which is 103 kg m−3. Now let us take another look at the FRW equation and rewrite
it as

1

2
ȧ2 − 4πG

3
ρa2 = −1

2
kc2



General Relativity and Cosmology 48

which has the form Etot = U +K and we equate Etot to −kc2 so that K is the kinetic energy,
U is the gravitational energy. We see that if ρ = ρc, it corresponds to the total energy of the
system being 0, i.e. kinetic and gravitational energy balance themselves out perfectly. Let us
look at the case of nonzero k.

k < 0 ρ < ρc and therefore total energy is positive, kinetic energy wins out and the Universe
expands at a constant speed.

k > 0 ρ > ρc and the total energy is negative, gravitational energy wins out and the Universe
recollapses.

We recover an important underlying principle behind all this, the geometry is related to the
energy density.

It is convenient to define a more compact notation. The fractional energy density or density
parameter. We define

Ω ≡ ρ

ρc

It will be a function of a and we normally express its value today as Ω0. If there are various
contributions to the energy density, we can define the fractional energy densities of each one of
these contributions. For example

ΩR ≡ ρR
ρc

ΩM ≡ ρM
ρc

· · ·

It is convenient to define two additional Ωs:

ΩΛ ≡ Λ

3H2

Ωk ≡ − kc2

a2H2

and we have Ω:

Ω = ΩR + ΩM + ΩΛ

We now have

Ω < 1 : ρ < ρc, k < 0, Universe is open (hyperbolic)

Ω = 1 : ρ = ρc, k = 0, Universe is flat (Euclidean)

Ω > 1 : ρ > ρc, k > 0, Universe is closed (spherical)

If we divide the FRW equation through by ρc we find that it can be rewritten as

H2(a) = H2
0

[

ΩM0

a3
+

ΩR0

a4
+

ΩK0

a2
+ ΩΛ

]

(22)

where the subscript ”0” indicates that these quantities are evaluated at t0. We will normally
drop the subscript when referring to the various Ωs evaluated today. When we refer to the Ωs
at different times, we will explicitely say so or add an argument (for example ΩM(a) or ΩM(z)).
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How does Ω evolve? Without loss of generality, let us consider a Universe with dust, take
the FRW equations and divide by H2 to obtain

Ω− 1 =
kc2

a2H2
∝ kt2/3

I.e., if Ω 6= 1, it is unstable and driven away from 1. The same is true in a radiation dominated
universe and for any decelerating Universe: Ω = 1 is an unstable fixed point and, as we saw
above, curvature dominates at late times.

19 Properties of a Friedman Universe I

Let us revisit the properties of a FRW universe, now that we know a bit more about the the
evolution of the scale factor. Distances play an important role if we are to map out its behaviour
in detail. We have already been exposed to Hubble’s law

v = H0d

from which we can extract Hubble’s constant. From Hubble’s constant we can define a Hubble
time

tH =
1

H0
= 9.78× 109 h−1 yr

and the Hubble distance

DH =
c

H0

= 3000 h−1 Mpc

These quantities set the scale of the Universe and give us a rough idea of how old it is and how
far we can see. They are only rough estimates and to get a firmer idea of distances and ages,
we need to work with the metric and FRW equations more carefully.

To actually figure out how far we can see, we need to work out how far a light ray travels
over a given period of time. To be specific, what is the distance, DM to a galaxy that emitted
a light ray at time t, which reaches us today? Let us look at the expression for the metric used
in equation 20 for a light ray. We have that

dr2

1− kr2
=

c2dt2

a2(t)
(23)

The time integral gives us the comoving distance:

DC = c
∫ t0

t

dt′

a(t′)

From equation 22 we have that −k = Ωk/D
2
H . Performing the radial integral (and assuming

the observer is at r = 0 we have

∫ DM

0

dr√
1− kr2

=



















DH√
Ωk

sinh−1[
√
ΩkDM/DH ] for Ωk > 0

DM for Ωk = 0
DH√
|Ωk|

sin−1[
√

|Ωk|DM/DH ] for Ωk < 0
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so we find an expression for the proper motion distance (also known as the transverse comoving
distance, DM in terms of the comoving distance)

DM =



















DH√
Ωk

sinh[
√
ΩkDC/DH ] for Ωk > 0

DC for Ωk = 0
DH√
|Ωk|

sin[
√

|Ωk|DC/DH ] for Ωk < 0

Suppose now we we look at an object of a finite size which is transverse to our line of sight
and lies at a certain distance from us. If we divide the physical transverse size of the object by
the angle that object subtends in the sky (the angular size of the object) we obtain the angular
diameter distance:

DA =
DM

1 + z

Hence, if we know that size of an object and its redshift we can work out, for a given Universe,
DA.

Alternatively, we may know the brightness or luminosity of an object at a given distance.
We know that the flux of that object at a distance DL is given by

F =
L

4πD2
L

DL is aptly known as the luminosity distance and is related to other distances through:

DL = (1 + z)DM = (1 + z)2DA

It turns out that, in astronomy, one often works with a logarithmic scale, i.e. with magnitudes.
One can define the distance modulus:

DM ≡ 5 log

(

DL

10 pc

)

and it can be measured from the apparent magnitude m (related to the flux at the observer)
and the absolute magnitude M (what it would be if the observer was at 10 pc from the source)
through

m = M +DM

We now have a plethora of distances which can be deployed in a range of different observa-
tions. They clearly depend on the universe we are considering, i.e. on the values of H0, and the
various Ωs. While Ωk will dictate the geometry, Dc will depend on how the Universe evolves. It
is useful to rewrite Dc in a few different ways. It is useful to use the FRW in the form presented
in equation 22. We can transform the time integral in Dc to an integral in a:

DC =
∫ t0

t

cdt′

a(t′)
= c

∫ 1

a

da

a2H(a)
= DH

∫ 1

a

da

a2
√

ΩM/a3 + ΩR/a4 + Ωk/a2 + ΩΛ
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An interesting question is how far has light travelled, from the big bang until now? This
is known as the particle horizon, rP and a naive estimate would be rP ≃ ct0 but that doesn’t
take into account the expansion of space time. The correct expression is given above and it is

rP = DM(0)

where the argument implies that it is evaluated from t = 0 to t = t0. Applying it now to the
simple case of a dust filled, flat Universe. We have that

rP = 3ct0

Unsurprisingly, the expansion leads to an extra factor.
We could ask a different question: how far can light travel from now until the infinite future,

i.e. how much will we ever see of the current Universe. Known as the event horizon it is by the
integral of equation 23 from t0 until ∞. For example in a flat Universe we have

rE =
∫ ∞

t0

cdt′

a(t′)

For a dust or radiation dominated universe we have that rE = ∞ but this is not so for a universe
dominated by a cosmological constant.

We have been focusing on distances but we can also improve our estimate of ages. We
defined the Hubble time above and that is a rough estimate of the age of the Universe. To do
better we need to resort to the FRW equations again, as above we have that ȧ = aH so

dt =
da

aH
→
∫ t0

0
dt =

∫ 1

0

da

aH
= t0

which, combined with equation 22 gives us

t0 =
1

H0

∫ 1

0

da

a
√

ΩM/a3 + ΩR/a4 + Ωk/a2 + ΩΛ

We can use the above equation quite easily. For a flat, dust dominated Universe we find
t0 = 2/(3H0). If we now include a cosmological constant as well, we find

t0 = H−1
0

∫ 1

0

da

a
√

ΩM/a3 + ΩΛ

At ΩΛ = 0 we simply retrieve the matter dominated result, but the larger ΩΛ is, the older the
Universe. To understand why, recall the Raychauduri equation for this Universe:

ä

a
= −4πG

3
ρ+

Λ

3

Divide by H2
0 and we have that the deceleration parameter

q0 ≡ −a(t0)ä(t0)

ȧ2(t0)
=

1

2
ΩM − ΩΛ
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If ΩM +ΩΛ = 1 then q0 =
3
2
ΩM −1. If ΩM < 2

3
we have q0 < 0 and the Universe is accelerating.

This lets us understand why the Universe is older. Take a ΩΛ = 0 and a ΩΛ > 0 which both
have the same expansion rate today. The latter is accelerating which means it was expanding
more slowly in the past than the former. This means it must have taken longer to reach its
current speed and hence is older. Furthermore we can see that our inference about the Universe
depends on our knowledge of the various Ωs. In other words, if we want to measure the age of
the Universe we must also measure the density in its various components.

Finally, let us revisit Hubble’s law. We worked out the relationship between velocities and
distance for two objects which were very close to each other. If we want to consider objects
which are further apart (not too distant galaxies) we can Taylor expand the scale factor today,
we find that

a(t) = a(t0) + ȧ(t0)[t− t0] +
1

2
ä(t0)[t− t0]

2 + · · ·

Assume that the distance to the emitter at time t is roughly given by d =≃ c(t0 − t) we can
rewrite it as

(1 + z)−1 = 1−H0
d

c
− q0H

2
0

2

(

d

c

)2

+ · · ·

For q0 = 0 and small z we recover the Hubble law, cz = H0d. As we go to higher redshift, this
is manifestly not good enough.

20 The Cosmological Distance ladder

Given our model of a range of possible universes, we would like to pin down which set of
cosmological parameters (like t0, H0, ΩM , · · ·) correspond to our Universe. We can ask questions
like: what is the age of the Universe, is it accelerating or decelerating, what is its density and
geometry? Interestingly enough, all these questions must be answered together and to do so
we need to go out, observe and measure.

The first step is to map out the Universe and measure distances and redshifts accurately.
By far the easiest quantity to measure is the redshift. By looking at the shift in the spectra of
known elements it is possible to infer the recession velocity of the galaxy directly. Measuring
distances is much harder. The most direct method is to use parallax to measure the distance
to a star. Let us remember what you do here. Imagine that you look at an object in the sky. It
can be described in terms of two angles. It has a position on the celestial sphere. Now imagine
that we move a distance 2d from where we were. The object may move an angle θ from where
it was. The angle that it has moved will be related to the distance D and displacement d. If we
say θ = 2α then we have tanα = d

D
If α is small then we can use the small angle approximation

to get

α =
d

D

The motion of the earth around the sun gives us a very good baseline with which to measure
distance. The distance from the earth to the sun is 1 AU so we have that D = 1

α
where α is
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Figure 7: The motion of the Earth around the Sun supplies us with a long baseline for parallax
measurments.

measured in arcseconds. D is then given in parsecs. One parsec corresponds to 206,265 AU or
3.09 × 1013km. This is a tremendous distance, 1pc ∼ 3.26 light years. All stars have parallax
angles less than one arcsecond. The closest star, Proxima Centauri, has a distance of 1.3pc. In
1989 a satellite was launched called Hipparcos to measure the distances to 118,000 stars with
an accuracy of 0.001 arcseconds. This corresponds to distances of hundreds of parsecs. This
may seem far but it isn’t. The sun is 8kpc away from the centre of the galaxy.

We would like to be able to look further. The basic tool for doing this is to take an object
of known brightness and see how bright it looks. Take a star with a given luminosity L. The
luminosity is the amount of light it pumps out per second. How bright will it look from where
we stand? We can think of standing on a point of a sphere of radius D centred on the star.
The brightness will be B = L

4πD2 The further away it is the dimmer it will look. If we know the
luminosity of a star and we measure its brightness, then we will know how far away it is.

How can we do that in practice? Stars have varying luminosities and are very different.
Is there any way in which we can use information about a star’s structure to work out it’s
luminosity? Let us start by looking at the colours of stars. Different stars will emit different
spectra. Some will look redder, others more yellow, while others will be blue. Their colours
(or spectra) are intimately tied to their temperature. Remember a black body what black
body looks like. Its spectrum peaks at a certain value which is given by its temperature. For
example, the Sun is yellow-white, has a temperature of 5800 K. The star Bellatra is blue and
has a temperature of 21,500 K. Betelgeuse is red and has a temperature of 3500 K. Now we
might think that we have it made.

The luminosity must be related to the temperature somehow. If we assume that it is
black body, the energy flux is F = σT 4 where σ is the Stefan-Boltzmann constant σ =
5.6×10−8Wm−2K−4. So luminosity is simply the surface of the star times its flux L = 4πR2σT 4.
There is indeed a very tight connection but stars can have different radii. For example main
sequence stars have one type of radius while red giants have much larger radii. We can look at
the H.R. diagram and find stars with the same temperature which have very different luminosi-
ties. However if we can identify what type of stars they are then we can, given their colours,
read off their luminosities.

Suppose we look at the spectra of two stars, A and B, and we identify some spectral lines.
These correspond to the same absorption/emission lines but in A they’re narrower than in B.
What leads to the thickness of the lines? If there are random velocities, they will Doppler
shift the line. The larger the spread in velocities, the more shifts there will be. But clearly
for there to be a larger spread, they have to be closer to the core of the star i.e. the radius
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Figure 8: The luminosity of Cepheid stars varies periodically over time.

has to be smaller. I.e. broader lines imply smaller R. So by reading off the thickness of the
lines we can pinpoint what type of stars they are and then from their colours we can infer their
luminosity. For example: Sun has T ∼ 5800K. It is a main sequence star with a luminosity of
1 L⊙. Aldebaran is a giant star which, even though it is cooler, T ∼ 4000K, has a luminosity
of 370 L⊙. This method, known as spectroscopic parallax can be used to go out to 10kpc.

How can we move out beyond 10kpc? There are some stars which have a very useful
property. Their brightness varies with time and the longer their variation, the larger their
luminosity. These stars known as Cepheid stars are interesting because they have a) periods
of days (which means their variations can be easily observed) and b) are very luminous with
luminosites of about 100 − 1000 L⊙ and therefore they can be seen at great distances. It was
found that their period of oscillation is directly related to their intrinsic luminosity.

These stars pulsate because their surface oscillates up and down like a spring. The gas of the
star heats up and then cools down, and the interplay of pressure and gravity keeps it pulsating.
How do we know the intrinsic luminosity of these stars? We pick out globular clusters (very
bright aglomerations in the Galaxy with about 106 stars) and we use spectroscopic parallax
to measure their distances. Then we look for the varying stars, measure their brightness and
period and build up a plot. There is another class of star called RR Lyrae which also oscillate.
They have much shorter periods, and are less luminous (∼ 100 L⊙) but have a much tighter
relationship between period and luminosity. We can use these stars to go out to 30Mpc (i.e.
30 million parsecs). If we want to go further, we need something which is even brighter.

The method of choice for measuring very large distances is to look for distant supernovae.
As you know, supernovae are the end point of stellar evolution, massive explosions that pump
out an incredible amount of energy. Indeed supernovae can be as luminous as the galaxies which
host them with luminosities of around 109 L⊙. So we can see distant supernovae, measure their
brightness and if we know their luminosities, use the inverse square law to measure the distance.
A certain type of supernova (supernovae Ia) seem to have very similar behaviours. They don’t
all have the same luminosities but the rate at which they fade after explosion is intimately tied
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Figure 9: There is a tight relationship between the period (x-axis) and the luminosity (or
magnitude in the y-axis) for Cepheid and RRLyrae star.

to the luminosity at the moment of the explosion. So by following the ramp up to the explosion
and the subsequent decay it is possible to recalibrate a supernova explosion so that we know
its luminosity.

Supernovae Ia arise when a white dwarf which is just marginally heavier than the Chan-
drasekhar mass gobbles up enough material to become unstable and collapse. The electron
degeneracy pressure is unable to hold it up and it collapses in a fiery explosion. Supernovae
can be used to measure distances out to a distance of about 1000Mpc. They are extremely
rare, one per galaxy per hundred years, so we have to be lucky to find them. However there
are 109 galaxies to look at so the current practice is to stare at large concentrations of galaxies
and wait for an event to erupt. Of order 500 SN have been measured in the past decades.

Finally I want to mention another distance indicator which can be used to measure the
distances out to about 100 Mpc. When we look at distant galaxies there is a very useful
spectral line to measure. It has a wavelength of 21cm and corresponds to the energy associated
with the coupling of the spin of the nucleus (a proton) with the spin of an electron in a Hydrogen
atom. If they are aligned, the energy will be higher than if they are anti-aligned. Once again,
this line will have a certain width due to the Doppler effect as a result of internal motions in
the galaxy. In particular the rotation of the hydrogen will induce a Doppler effect. The faster
the rotation, the larger the Doppler effect and the wider the spectral line.

We know, from Newtonian gravity that the rotation is intimately tied to the mass of the
galaxy, so the wider the line, the faster the speed of rotation and hence the more massive
the galaxy. But the more massive the galaxy, the more stars it should contain and therefore
the more luminous it should be. So by measuring the 21cm line it is possible to measure the
luminosity of distant galaxies. This is known as the Tully Fisher relation.

We can now use these techniques to pin down various properties of our Universe.
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Figure 10: Top panel: the light curves of Supernovae Ia. Bottom panel: the light curves
have been recalibrated (or “stretched”) so that they all have the same decay rate. Note that,
following this procedure, all curves have the same luminosity at the peak.

21 The Thermal history of the Universe: Equilbrium

We shall now look at how the contents of the Universe are affected by expansion. The first
property which we must consider is that as the Universe expands, its contents cool down. How
can we see that? Let us focus on the radiation contained in the Universe. In the previous
sections we found that the energy density in radiation decreases as

ρ ∝ 1

a4
.

What else can we say about radiation? Let us make a simplifying assumption, that it is in
thermal equilibrium and therefore behaves like a blackbody. For this to be true, the radiation
must interact very efficiently with itself to redistribute any fluctuations in energy and occupy the
maximum entropy state. You have studied the properties of radiation (or relativistic particles)
in thermal equilibrium in statistical mechanics in the 2nd year and found that it can be described
in terms of an occupation number per mode given by

F (ν) =
2

exp hν
kBT

− 1

where ν is the frequency of the photon. This corresponds to an energy density per mode

ǫ(ν)dν =
8πν3dν

c3
h

exp hν
kBT

− 1
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If we integrate over all frequencies we have that the energy density in photons is:

ργ =
π2

15
(kBT )

(

kBT

h̄c

)3

. (24)

We have therefore that ργ ∝ T 4. Hence if radiation is in thermal equilibrium we have that

T ∝ 1

a

Is this the temperature of the Universe? Two ingredients are necessary. First of all, everything
else has to feel that temperature which means they have to interact (even if only indirectly)
with the photons. For example the scattering off photons of electrons and positrons is through
the emission and absorption of photons. And once again, at sufficiently high temperatures,
everything interacts quite strongly.

Another essential ingredient is that the radiation must dominate over the remaining forms
of matter in the Universe. We have to be careful with this because we know that different
types of energy will evolve in different ways as the Universe expands. For example we have
that the energy density of dust (or non-relativistic matter) evolves as ρNR ∝ a−3 as compared
to ργ ∝ a−4 so even if ργ was dominant at early times it may be negligible today. However
we also know that the number density of photons, nγ ∝ a−3 as does the number density of
non-relativistic particles, nNR ∝ a−3. If we add up all the non-relativisitic particle in the form
of neutrons and protons (which we call baryons), we find that number density of baryons, nB

is very small compared to the number density of photons. In fact we can define the baryon to
entropy ratio, ηB:

ηB =
nB

nγ
≃ 10−10

As we can see there are many more photons in the Universe than particles like protons and
neutrons. So it is safe to say that the temperature of the photons sets the temperature of the
Universe.

We can think of the Universe as a gigantic heat bath which is cooling with time. The
temperature decreases as the inverse of the scale factor. To study the evolution of matter
in the Universe we must now use statistical mechanics to follow the evolution of the various
components as the temperature decreases. Let us start off with an ideal gas of bosons or
fermions. Its occupation number per mode (now labeled in terms of momentum p) is

F (p) =
g

exp
(

E−µ
kBT

)

± 1

where g is the degeneracy factor, E =
√
p2c2 +M2c4 is the energy, µ is the chemical poten-

tial and + (-) corresponds to the Fermi-Dirac (Bose-Einstein) distribution. We can use this
expression to calculate some macroscopic quantities such as the number density

n =
g

h3

∫ d3p

exp
(

E−µ
kBT

)

± 1
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the energy density

ρc2 =
g

h3

∫

E(p)d3p

exp
(

E−µ
kBT

)

± 1

and the pressure

P =
g

h3

∫

p2c2

3E

d3p

exp
(

E−µ
T

)

± 1

It is instructive to consider two limits. First of all let us take the case where the tempera-
ture of the Universe corresponds to energies which are much larger than the rest mass of the
individual particles, i.e. kBT ≫ Mc2 and let us take µ ≃ 0. We then have that the number
density obeys

n =
ζ(3)

π2
g

(

kBT

h̄c

)3

(B.E.)

n =
3ζ(3)

4π2
g

(

kBT

h̄c

)3

(F.D.)

where ζ(3) ≃ 1.2 comes from doing the integral. The energy density is given by

ρc2 = g
π2

30
(kBT )

(

kBT

h̄c

)3

(B.E.)

ρc2 =
7

8
g
π2

30
(kBT )

(

kBT

h̄c

)3

(F.D.)

and pressure satisfies P = ρc2/3. As you can see these are the properties of a radiation. In
other words, even massive particles will behave like radiation at sufficiently high temperatures.
At low temperatures we have kBT ≪ Mc2 and for both fermions and bosons the macroscopic
quantities are given by:

n = g
(

2π

h2

)

3

2

(MkBT )
3/2 exp(−Mc2

kBT
)

ρc2 = Mc2n

P = nkBT ≪ Mc2n = ρ.

This last expression tells us that the pressure is negligible as it should be for non-relativistic
matter.

This calculation has already given us an insight into how matter evolves during expansion.
At sufficiently early times it all looks like radiation. As it cools down and the temperature falls
below mass thresholds, the number of particles behaving relativistically decreases until when
we get to today, there are effectively only three type of particles which behave relativistically:
the three types of neutrinos. We denote the effective number of relativistic degrees of freedom
by g∗ and the energy density in relativistic degrees of freedom is given by

ρ = g∗
π2

30
(kBT )

(

kBT

h̄c

)3
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22 The Thermal history of the Universe: The Cosmic

Microwave Background

Until now we have considered things evolving passively, subjected to the expansion of the
Universe. But we know that the interactions between different components of matter can be far
more complex. Let us focus on the realm of chemistry, in particular on the interaction between
one electron and one proton. From atomic physics and quantum mechanics you already know
that an electron and a proton may bind together to form a Hydrogen atom. To tear the electron
away we need an energy of about 13.6eV . But imagine now that the universe is sufficiently hot
that there are particles zipping around that can knock the electron out of the atom. We can
imagine that at high temperatures it will be very difficult to keep electrons and protons bound
together. If the temperature of the Universe is such that T ≃ 13.6eV then we can imagine that
there will be a transition between ionized and neutral hydrogen.

We can work this out in more detail (although not completely accurately) if we assume that
this transition occurs in thermal equilibrium throughout. Let us go through the steps that lead
to the Saha equation. Assume we have an equilibrium distribution of protons, electrons and
hydrogen atoms. Let np, ne and nH be their number densities. In thermal equilibrium (with
T ≪ M) we have that the number densities are given by

ni = gi

(

2π

h2

)

3

2

(MikBT )
3

2 exp
µi −Mic

2

kBT

where i = p, n,H . In chemical equlibrium we have that

µp + µe = µH

so that

nH = gH

(

2π

h2

)

3

2

(MHkBT )
3

2 exp
−MHc

2

kBT
exp

(µp + µe)

kBT

We can use the expressions for np and ne to eliminate the chemical potentials and obtain:

nH = nenp
gH
gpge

(

2π

h2

)− 3

2

(MHkBT )
3

2 (MpkBT )
− 3

2 (MekBT )
− 3

2 exp
−MHc

2 +Mpc
2 +Mec

2

kBT

There are a series of simplifications we can now consider: i) Mp ≃ MH , ii) the binding energy
is B ≡ −MHc

2 +Mpc
2 +Mec

2 = 13.6eV , iii) nB = np + nH iv) ne = np and finally gp = ge = 2
and gH = 4. So we end up with

nH = n2
p(MekBT )

− 3

2

(

2π

h2

)− 3

2

exp
B

kBT

We can go further and define an ionization fraction X ≡ np

nB
. Quite clearly we have X is 1 if

the Universe is completely ionized and 0 if it is neutral. Using the definition of the baryon to
entropy fraction we have

1−X = X2ηBnγ

(

2π

h2

)− 3

2

(MekBT )
− 3

2 exp
B

kBT
(25)
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Figure 11: The evolution of the ionization fraction as a function of redshift

Finally we have that we are in thermal equilibrium so we have an expression for nγ and we get

1−X

X2
≃ 3.8ηB

(

kBT

Mec2

) 3

2

exp
B

kBT
(26)

This is the Saha equation. It tells us how the ionization fraction, X evolves as a function
of time. At sufficiently early times we will find that X = 1, i.e. the Universe is completely
ionized. As it crosses a certain threshold, electrons and protons combine to form Hydrogen.
This happens when the temperature of the Universe is T ≃ 3570K or 0.308eV , i.e. when it was
approximately 380, 000 years old, at a redshift of z ≃ 1100. We would naively expect this to
happen at 13.6eV but the prefactors in front of the exponential play an important role. One
way to think about it is that, at a given temperature there will always be a few photons with
energies larger than the average temperature. Thus energetic photons only become unimportant
at sufficiently low temperatures.

What does this radiation look like to us? At very early times, before recombination, this
radiation will be in thermal equilibrium and satisfy the Planck spectrum:

ρ(ν)dν =
8πh

c3
ν3dν

exp(hν/kBT )− 1

After recombination, the electrons and protons combine to form neutral hydrogen and the
photons will be left to propagate freely. The only effect will be the redshifting due to the
expansion. The net effect is that the shape of the spectrum remains the same, the peak shifting
as T ∝ 1/a. So even though the photons are not in thermal equilibrium anymore, the spectrum
will still be that of thermal equilibrium with the temperature T0 = 3000o/1100 Kelvin, i.e.
T0 = 2.75o Kelvin.

The history of each individual photon can also be easily described. Let’s work backwards.
After recombination, a photon does not interact with anything and simply propagates forward
at the speed of light. It’s path will be a straight line starting off at the time of recombination and
ending today. Before recombination, photons are highly interacting with a very dense medium
of charged particles, the protons and electrons. This means that they are constantly scattering
off particles, performing something akin to a random walk with a very small step length. For
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all intents and purposes, they are glued to the spot unable to move. So one can think of such
a photon’s history as starting off stuck at some point in space and, at recombination, being
released to propogate forward until now.

We can take this even further. If we look from a specific observing point (such as the Earth
or a satellite), we will be receiving photons from all directions that have been travelling in a
straight line since the Universe recombined. All these straight lines will have started off at the
same time and at the same distance from us-i.e. they will have started off from the surface of
a sphere. This surface, known as the surface of last scattering is what we see when we look at
the relic radiation. It is very much like a photograph of the Universe when it was 380,000 years
old.

23 The Thermal history of the Universe: out of equili-

birium and Big Bang Nucleosynthesis

We have assumed that the Universe is in thermal equilibrium throughout this process. We have
come up with an expression for the ionization fraction which is not completely accurate but
qualitatively has the correct behaviour. There is another situation where assuming thermal
equilibrium will not only give us the wrong quantitative but also the wrong qualitative result.
We shall now look at what happens when the temperature of the Universe is kBT ≃ 1MeV .
This corresponds to the energy where nuclear processes play an important role.

The particles we will consider are protons (p) and neutrons (n). These particles will combine
to form the nuclei of the elements. For example

1p → Hydrogen nucleus

1p+ 1n → Deuterium nucleus

1p+ 2n → Tritium nucleus

2p+ 1n → Helium 3 nucleus

2p+ 2n → Helium 4 nucleus (27)

The binding energy of each nucleus will be the difference between the mass of the nucleus and
the sum of masses of the protons and neutrons that form it. For example the binding energy of
Deuterium is BD = 2.22MeV . The neutrons and protons can convert into each other through
the weak interactions:

p + ν̄e → n + e+

p+ e− → n + ν

n → p+ e− + ν̄

(28)

Let us start with an equilibrium approach. We can try to work out the abundance of light
elements of the Universe using the same rationale we used above. Once again we have

ni = gi

(

2π

h2

)

3

2

(MikBT )
3

2 exp
µi −Mic

2

kBT
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Let us assume thermal equilibrium (µn = µp). We have that

neq
n

neq
p

= exp
(

− Q

kBT

)

(29)

where Q is the energy due to the mass difference between the neutron and the proton, Q =
1.293MeV . We can see that at high temperatures there are as many protons as neutrons. But
as T falls below Q the mass difference becomes important and the neutrons dwindle away. If
this were the correct way of calculating the abundance of neutrons we would find that as the
Universe cools, all the neutrons would dissapear. No neutrons would be left.

To get an accurate estimate we must go beyond the equilibrium approximation. We can
step back a bit and think about what is actually going on when protons and neutrons are
interconverting into each other. The reaction can be characterised in terms of a reaction rate,
Γ which has units of s−1. The reaction must compete against the expansion of the universe
which itself can be described in terms of a “rate”: the expansion rate H which has units of s−1.
The relative sizes of Γ and H dictate how important the reactions are in keeping the neutrons
and protons equilibrated.

One can write down a Boltzmann equation for the comoving neutron number (the number
of neutrons in a box in comoving units):

d lnNn

d ln a
= − Γ

H

[

1−
(

N eq
n

Nn

)2
]

Where N eq
n = a3neq

n is the equilibrium expression given above. If Γ ≫ H we have that Nn →
N eq

n , i.e. the neutron number density will be pushed to its equilibrium value. In that regime
we will have the ratio of neutrons as given by 29. If, however, Γ ≪ H , the expansion of the
universe will win out and inhibit the depletion or creation of neutrons through that reaction.
The equation is then approximately given by

d lnNn

d ln a
≃ 0

i.e. the neutron comoving number is frozen (and the number density will decay as a−3). The
transition from one regime to the other will occur when Γ ∼ H and it will depend on how
the reaction rate depends on temperature and masses. It turns out that for this reaction, the
temperature at which reactions “freeze out” is kBTf ≃ 0.7 − 0.8MeV . The relative number
density of neutrons to protons will be frozen in at

neq
n

neq
p

≃ 1

6

In fact the neutron decay rate plays a role as well to further decrease the fraction of neutrons
so that we in fact get nn/np → 1

7
. We can use a very simple argument to find the fraction of

Helium 4 in the Universe. We start off with 7/8 in protons and 1/8 in neutrons. Let us assume
that the neutrons are used to make Helium atoms. We then need to pair up the 1/8 with 1/8
protons, reducing the number of unpaired protons to 6/8 ≃ 75%. So we roughly expect to have
about 25% of the mass in Helium and 75% in Hydrogen. A more accurate calculation gives a
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Figure 12: The mass fraction of Helium in stars as a function of the fraction of Oxygen (Izotov
& Thuan). The more Oxygen there is, there more stellar burning has occured and therefore
more helium has been produced from hydrogen burning. This means that we expect to find a
higher amount of helium than what we have found from primordial nucleosynthesis

helium fraction of about 24% which is borne out by observations. One can look at astrophysical
systems and measure the amount of Helium. The more Oxygen there is, the more processing
there is (and hence the more Helium has been produced in stellar burning).

The abundances of the other light elements is very small but measurable and predictable.
For example

nD

nH
≃ 3× 10−5

Throughout the history of the Universe, relics have been left over. A relic bath of photons is
left over from when the Universe had a kBT ≃ eV . A relic distribution of light elements is left
over from when kBT ≃ MeV . It is conceivable that relic particles are left over from transitions
which may have occured at higher energies and temperatures.


