PROBLEM 1

Consider the following structure with an applied load P. The horizontal block (drawn as a thick line) is rigid and supported on rollers. The other two bars have stiffnesses K_{1} and K_{2} and form angles θ_{1} and θ_{2} with the horizon. As result of the application of the force P, the rigid block moves by a small displacement δ.

I need to solve for an equation for δ in respect to both K values, P , and angles.
Force Equations

$$
\begin{gather*}
F_{1} * \cos \left(\theta_{1}\right)+F_{2} * \cos \left(\theta_{2}\right)=P \tag{1}\\
F_{1}=\frac{P-F_{2} * \cos \left(\theta_{2}\right)}{\cos \left(\theta_{1}\right)} \tag{2}
\end{gather*}
$$

Elongation Force Relations

$$
\begin{align*}
e_{1} & =\frac{F_{1}}{K_{1}} \tag{3}\\
e_{2} & =\frac{F_{2}}{K_{2}} \tag{4}
\end{align*}
$$

Compatibility Equations

$$
\begin{equation*}
\delta=\frac{e_{1}}{\cos \left(\theta_{1}\right)}=\frac{e_{2}}{\cos \left(\theta_{2}\right)} \tag{5}
\end{equation*}
$$

Rest is algebra to solve for δ

$$
\begin{gather*}
\frac{P-F_{2} \cos \left(\theta_{2}\right)}{K_{1} * \cos \left(\theta_{1}\right)^{2}}=\frac{F_{2}}{K_{2} * \cos \left(\theta_{2}\right)} \tag{6}\\
F_{2}=\frac{\frac{P}{K_{1} * \cos (\theta)^{2}}}{\frac{\cos \left(\theta_{2}\right)}{K_{2} * \cos \left(\theta_{2}\right)}+\frac{K_{1} * \cos (\theta)^{2}}{}} \tag{7}
\end{gather*}
$$

After solving for F_{2}, we go back to the equation for δ.

$$
\begin{equation*}
\delta=\frac{e_{2}}{\cos \left(\theta_{2}\right)} \tag{8}
\end{equation*}
$$

Final Equation for Delta:

$$
\begin{equation*}
\frac{\frac{F_{2}}{K_{2}}}{\cos \left(\theta_{2}\right)} \tag{9}
\end{equation*}
$$

