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1 December 2019

1. Let (X, d) be a metric space. The open ball with center z ∈ X of radius
r > 0 is defined as

Br(z) := {x ∈ X | d(x, z) < r }

(a) Give an example for

Br(z) 6= Kr(z) := {x ∈ X | d(x, z) ≤ r }

Does at least one of the inclusions ⊆ or ⊇ always hold?

(b) What are the answers in the previous case, if we additionally as-
sume that (X, d) has an inner metric?

An inner metric d0 associated to d is defined as the infimum of all
lengths of rectified curves between two points:

Let σ : [0, 1] −→ X with σ(0) = x , σ(1) = y a rectified curve
with length

L(σ) = sup

{
n∑
k=1

d(σ(tk−1), σ(tk))

∣∣∣∣∣ 0 = t0 < t1 < · · · < tn = 1 , n ∈ N

}

Then d0(x, y) = inf L(σ) .

Reason: Exceptions in Metric Spaces.

Solution: The function dz := d(z, .) : X −→ R is Lipschitz continuous
with constant 1 and thus continuous: w.l.o.g. we may assume dz(x) ≥
dz(y) so

|dz(x)− dz(y)| = dz(x)− dz(y) = d(z, x)− d(z, y)

≤ d(z, y) + d(y, x)− d(z, y) = d(y, x) = d(x, y)

Hence d−1([0, r]) = Kr(z) is closed. As Br(z) ⊆ Kr(z) we have

Br(z) ⊆ Kr(z)

in any case. Now we define a metric space (Rn, d) by

d(x, y) :=

{
||x− y|| , ||x− y|| ≤ 1

1 , ||x− y|| > 1
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As ||.|| is the ordinary Euclidean norm, we have

B1(z) = {x ∈ Rn | ||x−z|| ≤ 1 } ( Rn = {x ∈ Rn | d(x, z) ≤ 1 } = Kr(z)

Let (X, d) now be an inner metric space and x ∈ Kr(z) .
Then Br(z) = Kr(z) if there is a sequence (xn)n∈N ⊆ Br(z) such that
limn→∞ xn = x .

If x ∈ Br(z) we can simply choose the constant sequence, hence we
may assume d(x, z) = r . We choose a monotone decreasing sequence
(εn)n∈N ⊆ R>0 of positive real numbers which converges to 0 . By as-
sumption there are rectified curves σn with length L(σn) = r + εn for
every n ∈ N with σn(0) = z , σn(1) = x . Let’s assume the curves are
parameterized by their paths so we can choose xn := σn(r− εn) . Then

d(z, xn) = d(z, σn(r − εn)) = L(σn) = r − εn < r

which means that all xn ∈ Br(z) and xn
n→∞−→ x follows from

d(x, xn) = d(x, z)− d(z, xn) = r + εn − (r − εn) ≤ 2εn
n→∞−→ 0

2. Let f(z) =
7z − 51

z2 − 12z + 27
be a complex function.

(a) Determine the Laurent series of f(z) and their radius of conver-
gences around z = 3 in the cases where 0 is in the area of conver-
gence, and 10 is in the area of convergence.

(b) Determine limz→3 f(z) , Res(f, 3) and the kind of singularity in
z = 3 .

Reason: Laurent Series.

Solution: We write

f(z) =
7z − 51

z2 − 12z + 27
=

5

z − 3
+

2

z − 9
=

5

z − 3
+

2

(z − 3)− 6

=
5

z − 3
− 2

6
· 1

1−
(
z − 3

6

) =
5

z − 3
− 2

6
·
∞∑
n=0

(
z − 3

6

)n

=
5

z − 3
− 1

3
− 1

18
(z − 3)− 1

108
(z − 3)2 − 1

648
(z − 3)3 − 1

3888
(z − 3)4 − . . .

which converges for

∣∣∣∣z − 3

6

∣∣∣∣ < 1 ⇐⇒ 0 < |z − 3| < 6 and includes

z = 0 .
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In the other case we write

f(z) =
7z − 51

z2 − 12z + 27
=

5

z − 3
+

2

(z − 3)− 6

=
5

z − 3
+

2

z − 3
· 1

1−
(

6

z − 3

)
=

5

z − 3
+

2

z − 3
·
∞∑
n=0

(
6

z − 3

)n
=

7

z − 3
+

12

(z − 3)2
+ +

72

(z − 3)3
+

432

(z − 3)4
+

2592

(z − 3)5
+ . . .

which converges for

∣∣∣∣ 6

z − 3

∣∣∣∣ < 1⇐⇒ 6 < |z − 3| and includes z = 10 .

To determine the singularity at z = 3 we can only use the first expan-
sion due to the area of convergence. The Laurent series

f(z) =
5

z − 3
−1

3
− 1

18
(z−3)− 1

108
(z−3)2− 1

648
(z−3)3− 1

3888
(z−3)4−. . .

has only one power −1 and all others are higher. Hence f(z) has a
first order singularity at z = 3 . It also implies limz→3 f(z) = ∞ and
Res(f, 3) = c−1 = 5 .

3. Write the following groups as amalgamated products of cyclic groups:

(a) G = 〈x, y |x3y−3, y6〉
(b) H = 〈x, y |x30, y70, x3y−5〉

Reason: Amalgamations.

Solution: By definition we have groups F (x, y)/N where F (x, y) is
the free group generated by two elements and N the normal subgroup
generated by the given relations. We prove

(a) G ∼= Z/6Z ∗Z/2Z Z/6Z

Since N E G is normal, we get from x3y−3, y6 ∈ N

x6 = (x3y−3) · y3x3 = (x3y−3) ·
(
y3(x3y−3)y−3 · y6

)
∈ N

and so
G = 〈x, y |x3y−3, y6〉 = 〈x, y |x3y−3, y6, x6〉

4
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Hence it is sufficient to show that the amalgamated product

Z/6Z ∗Z/2Z Z/6Z

has this presentation, too.
We have the free product

Z/6Z ∗ Z/6Z ∼= 〈x |x6〉 ∗ 〈y | y6〉 = 〈x, y |x6, y6〉

With Z/2Z = 〈t | t2〉 we have two inclusions

ι1 : t 7−→ x3 , ι2 : t 7−→ y3

of Z/2Z into the two factors Z/6Z . By definition of the amalga-
mated product we thus have

Z/6Z ∗Z/2Z Z/6Z = (Z/6Z ∗ Z/6Z) /〈ι1(u)ι−12 (u) |u ∈ Z/2Z〉
∼= 〈x, y |x6, y6〉/〈ι1(t)ι−12 (t)〉
= 〈x, y |x6, y6〉/〈x3y−3〉
= 〈x, y |x6, y6, x3y−3〉 = G

(b) H ∼= Z/6Z ∗Z/2Z Z/10Z

As before with Z/2Z = 〈t | t2〉 we have two inclusions

ι1 : t 7−→ a3 , ι2 : t 7−→ b5

of Z/2Z into the two groups Z/6Z , Z/10Z . By definition of the
amalgamated product we thus have

Z/6Z ∗Z/2Z Z/10Z = (Z/6Z ∗ Z/10Z) /〈ι1(u)ι−12 (u) |u ∈ Z/2Z〉
∼= 〈a, b | a6, b10〉/〈ι1(t)ι−12 (t)〉
= 〈a, b | a6, b10〉/〈a3b−5〉
= 〈a, b | a6, b10, a3b−5〉 =: H ′

We now have to find an isomorphism ϕ : H −→ H ′ .

The mapping x 7−→ a , y 7−→ b induces a homomorphism ϕ̃ :
F (x, y) −→ H ′ by the universal property of the free group. Now

ϕ̃(x30) = ϕ̃(x)30 = (a6)5 = 15 = 1

ϕ̃(y70) = ϕ̃(y)70 = (b10)7 = 17 = 1

ϕ̃(x3y−5) = ϕ̃(x)3ϕ̃(y)−5 = a3b−5 = 1

5
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Since all relations of H are mapped onto 1, there is a homomor-
phism ϕ : H −→ H ′ by the universal property of the presentation
ofH = 〈x, y |x30, y70, x3y−5〉 such that ϕ◦π = ϕ̃ with the canonical
projection π : F (x, y) −→ H . In order to show that ϕ is actually
an isomorphism, we construct a homomorphism ψ : H ′ −→ H
which is inverse to ϕ .

As before, this time by mapping a 7−→ x , b 7−→ y, we get a homo-
morphic mapping ψ : H ′ −→ H . In order that this mapping is
well-defined, we must ensure that the relations in H ′ are mapped
onto 1 ∈ H, i.e. we must show x6 = y10 = 1 .

From x3y−5 = 1 we get H 3 1 = x30 = y50 , hence

y10 = y−200y210 = (y50)−4 · (y70)3 = 1−4 · 13 = 1

and
x6 = (x3)2 = (y5)2 = y10 = 1

So ψ is a well-defined homomorphism. By their mappings of the
generators, it is obvious that they are inverse to one another and

H ∼= H ′ = Z/6Z ∗Z/2Z Z/10Z

4. Prove that there are uncountably many groups, which are generated
by two elements, and not finitely presented.

Hint: There are uncountably many non-isomorphic groups with two
generators [Bernhard Neumann, 1937].

Reason: Group Presentations.

Solution: Assume there are countably many groups, which are gen-
erated by two elements, and not finitely presented. We show that the
set X of groups, which are generated by two elements, and are finitely
presented, is countable. If both those sets are countable, then so is
their union, contradicting the given hint.

Let G ∈ X with generators a, b . The set of possibly not reduced words
of length k over the alphabet { a, b, a−1, b − 1 } has 4k < ∞ elements.
Thus the set of those words of length not greater than k is also finite.
Hence there are only finitely many possibilities for m many relations r
of length l(r) ≤ k . So there are only finitely many possible groups

G(m, k,R) = 〈a, b |R ; |R| ≤ m and max
r∈R

l(r) ≤ k〉

6
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and the set of those groups Xm,k := {G(m, k,R) |R ⊆ F (a, b) } is
finite, and so is the countably infinite union

X =
⋃

m,k∈N

Xm,k

5. Let f : [1,∞) −→ [0,∞) be a continuously differentiable function.
Write S for the solid of revolution of the graph y = f(x) about the
x−axis. If the surface area of S is finite, then so is the volume.

Reason: Gabriel’s Horn.

Solution: Since the surface area is finite we get

lim
t→∞

sup
x≥t

f(x)2 − f(1) = lim sup
t→∞

∫ t

1

(
f(x)2

)′
dx

≤
∫ ∞
1

∣∣∣(f(x)2
)′ ∣∣∣ dx

= 2

∫ ∞
1

f(x)|f ′(x)| dx

≤ 2

∫ ∞
1

f(x)
√

1 + f ′(x)2 dx

=
A

π
<∞

Hence there is a t0 ≥ 1 such that supx≥t0 f(x) < ∞ and so is L :=
supx≥1 f(x) <∞ because f(x) is continuous with values in [0,∞), i.e.
bounded on [1,∞). For the volume we have

V =

∫ ∞
1

f(x) · πf(x) dx

≤
∫ ∞
1

L

2
· 2πf(x) dx

≤ L

2

∫ ∞
1

2πf(x)
√

1 + f ′(x)2 dx

=
L

2
· A

<∞

6. Calculate
∑∞

k,j=1

1

kj(k + j)2

Reason: Harmonic Series.

7
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Solution: We will make use of the Taylor expansion at x = 0

1

1− x
log

(
1

1− x

)
=
∞∑
n=1

Hnx
n where Hn =

n∑
k=0

1

k
and |x| < 1 (∗)

Let S :=
∑∞

k,j=1

1

kj(k + j)2
which is

S =
∞∑

k,j=1

1

kj

∫ 1

0

xk+j
dx

x

∫ 1

0

yk+j
dy

y
=

∞∑
k,j=1

1

kj

∫ 1

0

∫ 1

0

(xy)k+j
dx dy

xy

=

∫ 1

0

∫ 1

0

∞∑
k,j=1

(xy)k

k

(xy)j

j

dx dy

xy
=

∫ 1

0

∫ 1

0

log2(1− xy)

xy
dx dy

u=xy
=

∫ 1

0

∫ y

0

log2(1− u)

u

du

y
dy =

∫ 1

0

∫ 1

u

log2(1− u)

u

dy

y
du

=

∫ 1

0

log2(1− u)

u
· (− log(u)) du

v=1−u
=

∫ 0

1

log2 v

1− v
log(1− v) dv

=

∫ 1

0

(
1

1− v

)
log

(
1

1− v

)
(log2 v) dv =

∫ 1

0

∞∑
n=0

Hnv
n log2 v dv

=
∞∑
n=0

Hn

∫ 1

0

vn log2 v dv

=
∞∑
n=0

Hn

[
vn+1

(
(n+ 1)2 log2 v − 2(n+ 1) log v + 2

)
(n+ 1)3

]1
0

= 2
∞∑
n=1

Hn−1
1

n3
= 2

(
∞∑
n=1

Hn

n3
−
∞∑
n=1

1

n4

)

= 2

(
π4

72
− ζ(4)

)
=
π4

36
− π4

45
=

π4

180

7. Calculate S :=
∞∑
n=0

n∑
k=0

3k(2n− 2k)!(2k)!

2k8n[(n− k)!]2[k!]2(2n(1 + 2k) + (1− 4k2))

Reason: Cauchy Product.

Solution: We first clean up the various parts of the quotient. The

faculties are
(
2n−2k
n−k

)(
2k
k

)
, the powers are

3k

16k
· 1

8n−k
, and the polynomial

part is (2n+ 1− 2k)(1 + 2k). Thus we can write the series as a Cauchy

8
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product

S =
∞∑
n=0

n∑
k=0

(
2k

k

)
3k

16k(2k + 1)
·
(

2n− 2k

n− k

)
1

8n−k(2n− 2k + 1)

=

(
∞∑
n=0

(
2n

n

)
3n

16n(2n+ 1)

)(
∞∑
m=0

(
2m

m

)
1

8m(2m+ 1)

)

=

(
∞∑
n=0

(
2n

n

)
(
√
3
2

)2n

4n(2n+ 1)

)(
∞∑
m=0

(
2m

m

)
( 1√

2
)2m

4m(2m+ 1)

)

=
2√
3

arcsin

(√
3

2

)
·
√

2 arcsin

(
1√
2

)
=

2√
3
· π

3
·
√

2 · π
4

=
1

3
√

6
π2

8. Solve y′x− y =
√
x2 − y2

Reason: Jacobian Differential Equation.

Solution: y′x − y =
√
x2 − y2 can be transformed into a Jacobian

differential equation. First we divide x and substitute z =
y

x
so we get

y′ =
y

x
+

√
1−

(y
x

)2
= z +

√
1− z2

with

z′ =
y′x− y
x2

=

√
x2 − y2
x2

=
1

x

√
1− z2 =

1

x

z +
√

1− z2︸ ︷︷ ︸
:= g(z)=y′

−z


Now we have∫

dz

g(z)− z
=

∫
dz√

1− z2
= arcsin(z) + C =

∫
dx

x
= log |x|+ C ′

hence
y = x · sin (log |x|+ C)

We cannot rule out that g(z0) = z0 for some value z0. This means we
have

√
1− z20 = 0 or z0 = ±1, i.e. y = ±x are also solutions.

9
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9. Let (an)n∈N , (bn)n∈N ⊆ R≥0 be two sequences of nonnegative numbers,
where not all sequence elements vanish, and be p, q ∈ R with 1 < p, q <
∞ , 1

p
+ 1

q
= 1 . Prove

∞∑
n=1

∞∑
m=1

anbm
n+m

<
π

sin(π/p)
·

(
∞∑
n=1

apn

) 1
p

·

(
∞∑
m=1

bqm

) 1
q

Reason: Hilbert’s Inequality.

Solution: f(x) = 1
(1+x)xα

is for 0 < α < 1 strictly monotone decreas-
ing, hence

∞∑
m=1

1

(1 + m
n

) · (m
n

)α
· 1

n

Riemann sum
<

∫ ∞
0

dx

(1 + x)xα
(∗)
=

π

sin πα

Proof of (∗):∫ ∞
0

dx

(1 + x)xα
=

∫ ∞
0

x−α
∫ ∞
0

e−(1+x)t dt dx

=

∫ ∞
0

∫ ∞
0

x−αe−te−xt dt dx

u=tx
=

∫ ∞
0

∫ ∞
0

(u
t

)−α
e−ue−tt−1 du dx

=

∫ ∞
0

u−αe−u du

∫ ∞
0

tα−1e−t dt

= Γ(1− α)Γ(α)
α/∈Z
=

π

sinπα

10
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Now we have

∞∑
n,m=1

anbm
n+m

=
∞∑

n,m=1

an

(n+m)1/p
(
m
n

)1/(pq) · bm

(n+m)1/q
(
n
m

)1/(pq)
Hölder

≤

 ∞∑
n,m=1

apn

(n+m)
(
m
n

) 1
q

 1
p

·

 ∞∑
n,m=1

bqm

(n+m)
(
n
m

) 1
p

 1
q

=

 ∞∑
n=1

apn ·
∞∑
m=1

1

(1 + m
n

)
(
m
n

) 1
q

· 1

n

 1
p

·

 ∞∑
m=1

bqm ·
∞∑
n=1

1

( n
m

+ 1)
(
n
m

) 1
p

· 1

m

 1
q

<

(
∞∑
n=1

apn

) 1
p

·

(
∞∑
m=1

bqm

) 1
q

·

 π

sin
(
π
q

)
 1

p

·

 π

sin
(
π
p

)
 1

q

(∗∗)
=

(
∞∑
n=1

apn

) 1
p

·

(
∞∑
m=1

bqm

) 1
q

· π

sin
(
π
p

)
Proof of (∗∗):

sin
π

q
= sin

(
π

(
1− 1

p

))
= sinπ cos

(
π

p

)
− cosπ sin

(
π

p

)
= sin

π

p

10. Let f : R≥0 −→ R≥0 be an integrable function and p > 1 . Prove∫ ∞
0

(
1

x

∫ x

0

f(t) dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

(f(x))p dx

Hint: Substitute t = xup/r and at the end r = p− 1 .

Reason: Hardy’s Inequality for Integrals.

Solution: Let F (x) :=
∫ x
0
f(t) dt which becomes by the substitution

t = xup/r , dt = xp
r
u−1+p/rdu , u = tr/px−r/p , du = r

p
t−1+r/px−r/p

F (x)p =

(∫ x

0

f(t) dt

)p
= xp

(p
r

)p(∫ 1

0

f
(
xu

p
r

)
u
p
r
−1 du

)p
11
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Since u 7−→ up is convex, we can apply Jensen’s theorem for convex
functions (see October 2019 / 4b) and get(∫ 1

0

f
(
xu

p
r

)
u
p
r
−1 du

)p
≤
∫ 1

0

[
f
(
xu

p
r

)]p
· up(

p
r
−1) du

=

∫ x

0

f(t)ptp−rxr−p
(
r

p

)
t
r
p
−1x−

r
p dt

=
xr−

r
p

xp
· r
p
·
∫ x

0

f(t)p tp−r+
r
p
−1 dt

Hence

F (x)p ≤ xr−
r
p

(p
r

)p−1 ∫ x

0

f(t)p tp−r+
r
p
−1 dt

∫ ∞
0

F (x)px−r−1 dx ≤
∫ ∞
0

xr−
r
p

(p
r

)p−1 ∫ x

0

f(t)p tp−r+
r
p
−1 dt x−r−1 dx

=
(p
r

)p−1 ∫ ∞
0

∫ x

0

f(t)p tp−r+
r
p
−1 x−

r
p
−1 dt dx

=
(p
r

)p−1 ∫ ∞
0

f(t)p tp−r+
r
p
−1
∫ ∞
t

x−
r
p
−1 dx dt

=
(p
r

)p ∫ ∞
0

f(t)p tp−r−1 dt

With r = p− 1 we get∫ ∞
0

F (x)px−p dx ≤
(

p

p− 1

)p ∫ ∞
0

f(t)p dt

which had to be shown.

11. (HS-1) Choose any odd prime, square it and subtract one. Show that
the result is always divisible by twenty-four except for three. What can
be said, if we take the prime up to the power four, and subtract one?

Reason: Divisibility.

Solution: Let p be the chosen prime. Then the number we get is
n(p) = p2−1 = (p−1)(p+1) . n(3) = 8 is obviously not divisible by 24,
but e.g. n(5) = 24 , n(7) = 48 are. Now let us assume p > 3. Since p is
odd, p±1 are both even, hence 4 = 2 ·2 |n(p). But from to consecutive
even numbers, one has to be divisible by 4, which means 8 = 2 ·4 |n(p) .
Finally we have three consecutive numbers p − 1, p, p + 1 and one of
them has to be divisible by three. As it cannot be p by assumption,

12
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3 |n(p). Because 3 and 8 are coprime, we even get 3 · 8 = 24 |n(p) .

In this case we have m(p) = p4 − 1 = (p2 − 1)(p2 + 1) = (p − 1)(p +
1)(p2 + 1) . For small primes we get m(3) = 80 , m(5) = 624 , m(7) =
2401 , m(11) = 14, 460 . Let us assume p > 5 .As before we get 24 |m(p) .
Since p2 + 1 is always even for odd values of p, we have another factor
2 and 48 |m(p) . Now primes greater than 5 can only have one of the
digits { 1, 3, 7, 9 } as their last one.
If p ≡ 1 mod 10 then 5 | (p− 1).
If p ≡ 3, 7 mod 10 then 5 | (p2 + 1) since 3+1 = 10 , 72 + 1 = 50 and
for p = a · 10 + r > 11 we get for

p2 + 1 = (a · 10 + r)2 = 100a2 + 20ar + r2 ≡ r2 mod 10

and again a zero at the end for r = 3, 7 .
If p ≡ 9 mod 10 then 5 | (p+ 1) .
Thus we have in total 5 · 48 = 240 |m(p) again because 5 and 48 are
coprime.

12. (HS-2) In a square of side length 4, there is a circle of radius 1 in each
corner. In the center of the square is another circle that touches the
other four. Analogously, in the three-dimensional case, in the center of
a cube of edge length 4, there would be a sphere which would touch
eight spheres of radius 1 placed in the corners of the cube. In which
dimension does the central hypersphere become so large that it touches
all sides of the hypercube?

Reason: Abstract Geometry.

13



https://www.physicsforums.com/ 07/19-12/19

Solution: Pythagoras gives us (r + R)2 = R2 + R2 and for R = 1 we
have r =

√
2−1. Pythagoras applied once more for the next dimension

results in

(r +R)2 = (R2 +R2) +R2 = 3R2 =⇒ r =
√

3− 1

which continues with every new dimension. So the radius of the sphere
inside equals r =

√
n − 1 in dimension n. In dimension 4 the inner

sphere is as big as the outer ones. In order to touch the boundary of
the hypercube, we need r ≥ 2, i.e. n = 9 .
The nine-dimensional central hypersphere touches all 18 bounding sides,
eight-dimensional hypercubes, of the nine-dimensional hypercube. In
the ten-dimensional space, parts of the central hypersphere are even
outside the ten-dimensional hypercube. The higher the dimensions
get, the more this effect intensifies.

13. (HS-3) There is only one rule at Christmas at the world’s richest family:
The gifts have to be expensive, heavy and glamorous. So they all
present statues of pure gold. It may be large figure, a tiger sculpture
or an opulent candlestick. The eldest son who doesn’t live at home
anymore receives gifts of nine tons total, but none of which is heavier
than a ton. He wants to bring home all of them, but only could rent
trucks which can load three tons maximal. How many trucks are needed
to at least be able to transport all gifts of gold at the same time?

Reason: Gold Transport.

Solution: If the gifts were ten statues of 900 kg each, then three trucks
wouldn’t be sufficient. Now we load the first truck until it carries at
least two tons, which is possible, since all gifts weigh less than a ton.
We do the same for truck number two and three. Hence we are left
with less than three tons and a fourth truck will be sufficient.

14. (HS-4) Prove
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
for a, b, c > 0

Reason: Nesbitt’s Inequality.

Solution: As it is so important we recall the order of various mean

14
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values: Let x1, . . . , xn ∈ R. Then

xmin = min{x1, . . . , xn } minimum

xharm =
n

1

x1
+ · · ·+ 1

xn

harmonic mean

xgeom = n
√
x1 · · · · · xn , xk > 0 geometric mean

xarithm =
x1 + · · ·+ xn

n
arithmetic mean

xquadr =

√
1

n
(x21 + . . .+ x2n) quadratic

xcubic =
3

√
1

n
(x31 + . . .+ x3n) cubic

xmax = max{x1, . . . , xn } maximum

xmin ≤ xharm ≤ xgeom ≤ xarithm ≤ xquadr ≤ xcubic ≤ xmax

As a mnemonic we can think of x1 = 3, x2 = 5 where we have

3 <
15

4
= 3.75 <

√
15 ≈ 3.87 < 4 <

√
17 ≈ 4.12 <

3
√

76 ≈ 4.24 < 5

This means in our situation

(a+ b) + (b+ c) + (c+ a)

3
≥ 3

1

a+ b
+

1

b+ c
+

1

c+ a

2(a+ b+ c) ·
(

1

a+ b
+

1

b+ c
+

1

c+ a

)
≥ 9

1 +
c

a+ b
+ 1 +

a

b+ c
+ 1 +

b

c+ a
≥ 9

2
c

a+ b
+

a

b+ c
+

b

c+ a
≥ 3

2

15. (HS-5) Let x = (x1, . . . , xn) , y = (y1, . . . , yn) be tuples of positive
numbers. Prove

n∏
k=1

(xk + yk)
1/n ≥

n∏
k=1

x
1/n
k +

n∏
k=1

y
1/n
k

15
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Reason: Mahler’s Inequality.

Solution: By the arithmetic-geometric mean inequality we have

n∏
k=1

(
xk

xk + yk

)1/n

≤ 1

n

n∑
k=1

xk
xk + yk

,

n∏
k=1

(
yk

xk + yk

)1/n

≤ 1

n

n∑
k=1

yk
xk + yk

Hence

n∏
k=1

(
xk

xk + yk

)1/n

+
n∏
k=1

(
yk

xk + yk

)1/n

≤ 1

n

n∑
k=1

xk + yk
xk + yk

= 1

and multiplying with the denominator

n∏
k=1

x
1/n
k +

n∏
k=1

y
1/n
k ≤

n∏
k=1

(xk + yk)
1/n

16
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2 November 2019

1. If f has the real Fourier representation

f(x) =
a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx)

prove
1

π

∫ π

−π
|f(x)|2 dx =

a20
2

+
∞∑
k=1

(
a2k + b2k

)
Reason: Parseval Equation.

Solution: We can write f as complex Fourier series

f(x) =
∞∑

k=−∞

cke
ikx with 2ck =


ak − ibk , k > 0

a0 , k = 0

ak + ibk , k < 0

Then |f(x)|2 = f(x)f(x) =
∞∑

k,l=−∞

ckcle
i(k−l)x and

1

π

∫ π

−π
|f(x)|2 dx =

1

π

∞∑
k,l=−∞

ckcl

∫ π

−π
ei(k−l)x dx︸ ︷︷ ︸
=2πδk,l

= 2
∞∑

k=−∞

|ck|2 =
1

2

∞∑
k=−∞

|2ck|2

=
1

2

(
−1∑

k=−∞

|ak + ibk|2 + |a0|2 +
∞∑
k=1

|ak − ibk|2
)

=
a20
2

+
∞∑
k=1

(a2k + b2k)

2. We define the weighted Hölder-mean as

Mp
w :=

(
n∑
k=1

wkx
p
k

) 1
p

, M0
w := lim

p→0
Mp

w =
n∏
k=1

xwkk

for positive, real numbers x1, . . . , xn > 0 and a weight w = (w1, . . . , wn)
with w1 + . . .+ wn = 1 , wk > 0 and a p ∈ R− { 0 }.

17
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Prove M r
w ≤M s

w whenever r < s .

Hint: Use Jensen’s theorem for convex functions (see October 2019 /
4a).

Reason: Inequality of Weighted Hölder Means.

Solution: By the rule of L’Hôpital we get

log
n∏
k=1

xwkk =
n∑
k=1

wk log xk

= lim
p→0

∑n
k=1wkx

p
k log xk∑n

k=1wkx
p
k

= lim
p→0

(log
∑n

k=1wkx
p
k)
′

(p)′

= lim
p→0

log
∑n

k=1wkx
p
k

p

= lim
p→0

log (Mp
w)

We now apply Jensen’s inequality (see see October 2019 / 4a) for func-
tions x 7−→ xq which are convex for q ≥ 1 , x > 0 .

(a) 0 < r < s .
In this case q = s

r
> 1 and(

n∑
k=1

wkx
r
k

) s
r

≤
n∑
k=1

wk (xrk)
s
r =⇒

(
n∑
k=1

wkx
r
k

) 1
r

≤

(
n∑
k=1

wkx
s
k

) 1
s

(b) r < s < 0 .
In this case 0 < −s < −r and by the previous case we have(

n∑
k=1

wkx
−s
k

) 1
−s

≤

(
n∑
k=1

wkx
−r
k

) 1
−r

=⇒

(
n∑
k=1

wkx
−r
k

) 1
r

≤

(
n∑
k=1

wkx
−s
k

) 1
s

As we have proven it for any xk > 0 we have proven it for 1
xk

as
well, which is what had to be shown.

(c) r = 0 or s = 0 .
Since limr→0M

r
w = M0

w = lims→0M
s
w the inequality M r

w ≤ M s
w

holds true for 0 ≤ r < s and r < s ≤ 0, too.

(d) r < 0 < s .
This case follows from the transitive ordering M r

w ≤M0
w ≤M s

w .
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3. (HS-1) Mr. Smith on a full up flight with 50 passengers on a CRJ100
had lost his boarding pass. The flight attendant tells him to sit any-
where. All other passengers sit on their booked seats, unless it is al-
ready occupied, in which case they randomly choose another seat just
like Mr. Smith did. What are the chances that the last passenger gets
the seat printed on his boarding pass?

Reason: Combinatorics.

Solution: Let’s say passengers in the boarding queue and seats are
numbered 1, . . . , 50 and Mr.Smith is passenger 1. He could choose seat
number one and seat number fifty with the same probability. Either
case determines whether passenger 50 gets his correct seat or not. Now
if he chooses, say seat number 25, passengers 1, . . . , 24 can seat cor-
rectly and passenger 25 is now in the same situation Mr. Smith had
been at the beginning, i.e. seat with the same probability on seat 1 or
seat 50 which again determines the last passenger’s fate by the same
probability. If passenger 25 chooses another seat, then our situation
loops.

These considerations show that ultimately only occupancies of places
1 and 50 are important. Once a passenger has chosen one of these two
places at random, the outcome of the story is decided. If it’s number
one, passenger 50 will sit right. If it is number 50, it will not work
anymore. How often passengers sit on seats during boarding that are
not theirs, does not matter - as long as neither number 1 nor number
50 is affected. So the probability is exactly 0.5 .

4. (HS-2) On the first flight day of a little island hopper there was no
wind during the return flight. How does the total flight duration from
outward and return flight change if, instead, a strong headwind blows
on the way to the neighboring island - and on the way back, an equally
strong tailwind?

Reason: Wind and Flight Duration.

Solution: Let us assume the flight path is of length 1 one way, at

speed v and wind w. Then we need a time of F0 =
2

v
without wind.

With wind, we need a time F1 =
1

v − w
+

1

v + w
=

2v

v2 − w2
. Hence

v2 − w2 < v2 ⇐⇒ F0 =
2

v
<

2v

v2 − w2
= F1

and the complete flight is longer with wind.
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3 October 2019

1. Let A =
∑∞

k=0 ak , B =
∑∞

k=0 bk be two convergent series one of which

absolutely. The Cauchy-product C =
∑∞

k=0 ck with ck =
∑k

j=0 ajbk−j
converges then to AB. Give an example that absolute convergence of
one factor is necessary.

Reason: Mertens’ Theorem.

Solution: W.l.o.g. we assume that A converges absolutely. We note
the partial sums An =

∑n
k=0 ak , Bn =

∑n
k=0 bk.

AB = (A− An)B +
n∑
k=0

akB

Sn =
n∑
k=0

ck =
n∑
k=0

k∑
j=0

ajbk−j =
n∑
k=0

akBn−k

AB − Sn = (A− An)B +
n∑
k=0

ak(B −Bn−k)

The first term converges to 0 and with N := bn
2
c we can write the

second term

N∑
k=0

(B −Bn−k) =
n∑
k=0

ak(B −Bn−k)︸ ︷︷ ︸
=Pn

+
n∑

k=N+1

ak(B −Bn−k)︸ ︷︷ ︸
=Qn

For Pn we have

|Pn| ≤
N∑
k=0

|ak| · |B −Bn−k| ≤ max
N≤k≤n

|B −Bk| ·
N∑
k=0

|ak| −→ 0

because A converges absolutely and (B − Bk)k is a bounded sequence
converging to 0, i.e. there is a constant c such that |B−Bk| < c for all
k ∈ N0 . Therefore we get

|Qn| ≤
n∑

k=N+1

|ak| · |B −Bn−k| ≤ c
n∑

k=N+1

|ak| −→ 0

by the Cauchy criterion. Hence AB − Sn −→ 0 or Sn −→ AB .

An example for the necessity of absolute convergence for at least one
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factor is A = B =
∞∑
k=0

(−1)k√
k + 1

where A = B = −(
√

2 − 1)ζ

(
1

2

)
≈

0.605 . For a proof that the factors actually converge and the Cauchy
product diverges, see the problems from September.

2. Prove that a T0 topological group (Kolmogorov space) is already T2
(Hausdorff space). Show that an infinite linear algebraic group with
the Zariski topology is always T0 but never T2. Why the discrepancy?

Reason: Topological Groups.

Solution: Let G be a T0 topological group. We first show that the
singleton {e} is a closed subset, where e ∈ G is the neutral element.

Given any element x ∈ G, there is either an open neighborhood Ux of
x with e /∈ Ux or an open neighborhood V of e with x /∈ V . In the
latter case, we may assume that V = V −1. If not then we replace V
with V ∩ V −1 . The homeomorphism f : G −→ G , y 7−→ xy maps
e 7−→ x . Let Ux := f(V ), which is an open neighborhood of x = f(e)
with e /∈ Ux since e ∈ Ux would imply e = f(y) = xy and y = x−1 ∈ V
contradicting x /∈ V = V −1 . In any case we find for all x 6= e and open
neighborhood that doesn’t contain e. We now take the union

U :=
⋃
x 6=e

Ux

over all these neighborhoods. By construction, this is an open set with
U = G− {e}, so {e} is indeed closed.

The map G × G −→ G , (g, h) −→ gh−1 is continuous as G is a topo-
logical group. Its preimage of the closed subset {e} is the diagonal
∆G = { (g, g) | g ∈ G } which is therefore closed. Any topological space
X is T2 if and only if the diagonal ∆X is a closed subset of X ×X.

The statements about linear algebraic groups follow from general prop-
erties of the Zariski topology: points of affine varieties are closed be-
cause they correspond to maximal ideals; hence varieties are T0 (and
even T1 but note that schemes have more points and are only T0 in gen-
eral). Since any two non-empty open subsets of an irreducible variety
meet, varieties are never T2. Infinity is crucial here.

Explanation of the discrepancy: The above shows that while linear
algebraic groups are groups with a topology, they are not topological
groups! The reason is that the topology on G×G for a variety is not
the product topology!
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3. Let O(n) be the group of orthogonal real n×n matrices. For f ∈ Lp =
Lp(Rn) we set

A.f(x) = f(A−1x)

Show that Of = {A.f |A ∈ O(n) } ⊆ Lp(Rn) is compact.

Reason: Orthogonal Groups and Hilbert Spaces.

Solution: We use the theorem of Fréchet-Riesz-Kolmogorov. The set
Of is closed and bounded:

||A.f ||pp =

∫
Rn
|A.f(x)|p dx =

∫
Rn
|f(A−1x)|p dx =

∫
Rn
|f(x)|p dx = ||f ||pp

due to the transformation theorem of integration (| detA| = 1).

Let (An.f) be an Lp convergent sequence with limit h ∈ Lp. Since O(n)
is compact, the sequence of An has a convergent subsequence with limit
A ∈ O(n).

||An.f − A.f ||pp =

∫
Rn
|f(A−1n Ax)− f(x)|p dx

and this converges to 0 for n → ∞. Hence h = A.f and the sequence
(An.f) converges to A.f , i.e. Of ⊆ Lp is closed.

To obtain compactness by Fréchet-Riesz-Kolmogorov, we have to check
two conditions.

(a) to be shown:

lim
t→0

∫
Rn
|A.f(x+ t)− A.f(x)|p dx uniformly in A−→ 0

For ε > 0 there is a δ > 0 with

||t|| < δ =⇒
∫
Rn
|f(x+ t)− f(x)|p dx < ε

and∫
Rn
|A.f(x+ t)− A.f(x)|p dx =

∫
Rn
|f(x+ A−1t)− f(x)|p dx

and ||A−1t|| = ||t|| .Hence we obtain
∫
Rn |A.f(x+t)−A.f(x)|p dx <

ε for ||t|| < δ so the first condition is fulfilled.
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(b) to be shown: For every ε > 0 there is an M > 0 such that∫
Rn−BM (0)

|A.f(x)|p dx < ε ∀ A ∈ O(n)

where BM(0) is the closed ball of radius M and center 0 .

Since f ∈ Lp , we have for every ε > 0 an M > 0 with∫
Rn−BM (0)

|f(x)|p dx < ε

But the ball BM(0) is invariant under A ∈ O(n), so we get
A(BM(0)) = BM(0) and with the transformation theorem of inte-
gration ∫

Rn−BM (0)

|A.f(x)|p dx =

∫
Rn−BM (0)

|f(x)|p dx < ε

and the second condition of the theorem is fulfilled, i.e. Of ⊆ Lp

is compact.

4. (a) Let f : R −→ R be a convex function and λ1, . . . , λn positive
weights, i.e.

∑n
i=1 λi = 1. Show that

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi)

(b) Let g : [0, 1] −→ R be an integrable function such that the con-
tinuous function f : R −→ R is convex on the image of g . Prove

f

(
1

b− a

∫ b

a

g(x) dx

)
≤ 1

b− a

∫ b

a

f(g(x)) dx

(c) Prove without differentiation that the cylinder with the least sur-
face area among the ones with given volume V is the cylinder
whose height equals the diameter of its base.

(d) Prove that for any sequence an ≥ . . . ≥ a1 > 0 of positive real
numbers

1
1

a1

+
2

1

a1
+

1

a2

+ . . .+
n

1

a1
+ . . .+

1

an

< 2(a1 + . . .+ an)

Reason: Jensen’s Inequality.

Solution:
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(a) The definition of convexity is

f(λx− (1− λ)y) ≤ λf(x) + (1− λ)f(y)

which is our induction base. The step then is

f

(
n∑
i=1

λixi

)
= f

(
n−1∑
i=1

λixi + λnxn

)

= f

(1− λn)
n−1∑
i=1

λi
1− λn

xi︸ ︷︷ ︸
=:y

+λnxn


≤ (1− λn)f(y) + λnf(xn)

= (1− λn)f

(
n−1∑
i=1

λi
1− λn

xi

)
+ λnf(xn)

≤
n−1∑
i=1

λif(xi) + λnf(xn)

=
n∑
i=1

λif(xi)

(b) By the previous part we have for an integrable function ϕ :
[0, 1] −→ R such that f is convex on its image, λk = 1

n
and

xk = ϕ
(
k
n

)
f

(
n∑
k=1

ϕ

(
k

n

)
· 1

n

)
≤

n∑
k=1

f

(
ϕ

(
k

n

))
· 1

n

which becomes by the limit n→∞

f

(∫ 1

0

ϕ(u) du

)
≤
∫ 1

0

f(ϕ(u)) du

Now we substitute u =
x− a
b− a

, du =
dx

b− a
, hence

f

(∫ b

a

ϕ

(
x− a
b− a

)
dx

b− a

)
≤
∫ 1

0

f

(
ϕ

(
x− a
b− a

))
dx

b− a
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where we set g(x) = ϕ

(
x− a
b− a

)
and get

f

(
1

b− a

∫ b

a

g(x) dx

)
≤ 1

b− a

∫ b

a

f(g(x)) dx

(c) Let r, h, A, V be radius, height, surface and volume of the cylinder,
resp. Then

A

3π
=

2r2 + rh+ rh

3

AM≥GM
≥ 3

√
2r2 · rh · rh =

3

√
2V 2

π2
=: const. > 0

and equality holds for h = 2r.

(d) From an ≥ . . . ≥ a1 > 0 we get

1

a1
+ . . .+

1

an
≥ n

an
=⇒ n

1

a1
+ . . .+

1

an

≤ an < 2an

The inequality of our statement is clearly true for n = 1. By
induction we have

n∑
k=1

k
1

a1
+ . . .+

1

ak

=
n

1

a1
+ . . .+

1

an

+
n−1∑
k=1

k
1

a1
+ . . .+

1

ak

<
n

1

a1
+ . . .+

1

an

+ 2(a1 + . . .+ an−1)

< 2an + 2(a1 + . . .+ an−1)

= 2(a1 + . . .+ an)

5. Let p(x) = xn + an−1x
n−1 + . . . + a1x + a0 be a nonlinear polynomial

with an = 1 and suppose (x− 1)k+1 | p(x) for some positive integer k .
Prove that

n−1∑
j=0

|aj| > 1 +
2k2

n

Hint: At some stage of the proof you will need Chebyshev polynomials.

Reason: Tricky polynomial inequality.

Solution: We first prove the following statement:
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For any polynomial q(y) with degree at most k, we have

n∑
j=0

ajq(j) = 0 (∗)

We define for 0 ≤ ν ≤ k the polynomials

ϕ0(x) = 1 , ϕν(x) = x(x− 1)(x− 2) · . . . · (x− ν + 1)

and prove
n∑
j=0

ajϕν(j) = p(ν)(1)

by induction on ν. For v = 0 we have a0 + . . .+an = p(1) and for v = 1
it’s

a0ϕ1(0) + a1ϕ1(1) + a2ϕ1(2) + . . .+ an−1ϕ1(n− 1) + anϕ(n)

= a0 · 0 + a1 · 1 + a2 · 2 + . . .+ an−1 · (n− 1) + 1 · n
= p′(1)

p(ν)(x) =
n∑
j=0

aj
(
xj
)(ν)

=
n∑
j=v

aj
(
xj
)(ν)

=
n∑
j=v

ajϕν(j)x
j−ν

The induction step is now

p(v+1)(1) =

(
n∑
j=v

ajϕν(j)x
j−ν

)′
(1) =

(
n∑

j=ν+1

ajϕν(j)(j − ν)xj−ν−1

)
(1)

=

(
n∑

j=ν+1

ajϕν+1(j)x
j−ν−1

)
(1) =

n∑
j=ν+1

ajϕν+1(j) =
n∑
j=0

ajϕν+1(j)

Since {ϕ0, ϕ1, . . . , ϕk } is a basis of the vector space of all polynomials
up to degree k we may write q(x) =

∑k
ν=0 qνϕν(x) which gives us

n∑
j=0

ajq(j) =
n∑
j=0

aj

k∑
ν=0

qνϕν(j) =
k∑
ν=0

qν

n∑
j=0

ajϕν(j) =
k∑
ν=0

qνp
(ν)(1) = 0

as (x− 1)k+1 | p(x), so (∗) is proven.

To prove the original statement now let

q(x) = Tk

(
2

n− 1
x− 1

)
with the k−th Chebyshev polynomial.
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https://en.wikipedia.org/wiki/Chebyshev_polynomials

Then q(0), . . . , q(n− 1) ∈ Tk([−1, 1]) ⊆ [−1, 1] and

q(n) = Tk

(
n+ 1

n− 1

)
= cosh

(
k · arcosh

(
n+ 1

n− 1

))

= cosh

k · log

n+ 1

n− 1
+

√(
n+ 1

n− 1

)2

− 1


= cosh

(
k · log

(
(
√
n+ 1)2

n− 1

))
= cosh

(
k · log

(√
n+ 1√
n− 1

))

= cosh

k · log

1 +
1√
n

1− 1√
n


 > cosh

(
k · 2√

n

)

where we have used that n > 1, and that cosh is strictly monotone

increasing for positive arguments, and log

(
1 + x

1− x

)
> 2x for x < 1 .

1 + x

1− x
= 1 + 2

∞∑
n=1

xn > 1 + 2x+ 2 · 2

2!
x2 + 2 · 23−1

3!
x3 + 2 · 23

4!
x4 + . . . = e2x

Note that by definition of q(x) we have q(0), . . . , q(n− 1) ∈ [−1, 1] and
we have shown

n−1∑
j=0

|aj| ≥
n−1∑
j=0

aj(−q(j))
(∗)
= anq(n) = q(n) > cosh

(
k · 2√

n

)
> 1 +

2k2

n

6. Consider the triangle A = (0, 0) , B = (2
√

3, 0) , C = (3 −
√

3 , −3 +
3
√

3). Now choose on each side a point, Ma,Mb,Mc, such that the new
triangle built by those points is of minimal perimeter.
What is the area of the 4(Ma,Mb,Mc) ?

Reason: Fagnano Triangle.

Solution: The solution to the optimization problem is the Fagnano or
orthic triangle, which is built by the base points of all heights. In our
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triangle these are

Ma = (
√

3 ,
√

3) a =
1

2
+

1

6

√
3

Mb = (
1

2

√
3 ,

3

2
) b =

1

4
+

1

4

√
3

Mc = (3−
√

3 , 0) c = −1

2
+

1

2

√
3

We take MaMc as baseline, which results in the straight line, height
and base point equations

g : ~xg = (3− 2
√

3,−
√

3)τ · g + (
√

3,
√

3)τ 0 ≤ g ≤ 1

hg : ~x = (−
√

3,−3 + 2
√

3)τ · hq + (
1

2

√
3,

3

2
)τ 0 ≥ hq ≥ −

1

4

√
3

H : (
3

4
+

1

2

√
3 ,

3

4

√
3) g =

1

4

For the area of 4(Ma,Mb,Mc) we get

A =
1

2
· |g| · |hg|

=
1

2
· ||(3− 2

√
3 , −

√
3)|| · 1 · ||(−

√
3 , −3 + 2

√
3)|| ·

∣∣∣∣−1

4

√
3

∣∣∣∣
=

1

8

√
3 ·
√

3 + (3− 2
√

3)2 ·
√

(−3 + 2
√

3)2 + 3

= −9

2
+ 3
√

3 ≈ 0.696

The three straights of the triangle and their heights are

a : ~xa = (3− 3
√

3,−3 + 3
√

3)τ · a+ (2
√

3, 0)τ = ~̇xa · a+ ~s 0 ≤ a ≤ 1

b : ~xb = (3−
√

3,−3 + 3
√

3)τ · b = ~̇xb · b 0 ≤ b ≤ 1

c : ~xc = (2
√

3, 0)τ · c = ~̇xc · c 0 ≤ c ≤ 1

ha : ~x = (−3 + 3
√

3,−3 + 3
√

3)τ · ha 0 ≤ ha ≤
1

2
+

1

6

√
3

hb : ~x = (−3 + 3
√

3,−3 +
√

3)τ · hb + (2
√

3, 0)τ 0 ≥ hb ≥ −
3

4
− 1

4

√
3

hc : ~x = (0, 2
√

3)τ · hc + (3−
√

3,−3 + 3
√

3)τ 0 ≥ hc ≥ −
3

2
+

1

2

√
3

Solution

The orthic triangle, with vertices at the base points of the
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altitudes of the given triangle, has the smallest perimeter of
all triangles inscribed into an acute triangle, hence it is the
solution of Fagnano’s problem. Fagnano’s original proof used
calculus methods and an intermediate result given by his fa-
ther Giulio Carlo de’Toschi di Fagnano. Later however sev-
eral geometric proofs were discovered as well, amongst others
by Hermann Schwarz and Lipót Fejér. These proofs use the
geometrical properties of reflections to determine some min-
imal path representing the perimeter.

Physical principles

A solution from physics is found by imagining putting a rub-
ber band that follows Hooke’s Law around the three sides
of a triangular frame ABC, such that it could slide around
smoothly. Then the rubber band would end up in a position
that minimizes its elastic energy, and therefore minimize its
total length. This position gives the minimal perimeter tri-
angle. The tension inside the rubber band is the same every-
where in the rubber band, so in its resting position, we have,
by Lami’s theorem, ∠bcA = ∠acB,∠caB = ∠baC,∠abC = ∠cbA

Therefore, this minimal triangle is the orthic triangle.

https://en.wikipedia.org/wiki/Fagnano%27s_problem

Proof by geometry:

https://azimpremjiuniversity.edu.in/

SitePages/pdf/05-shailesh_fagnanosproblemaddendum_classroom.pdf

Proof by analytical geometry:

http://forumgeom.fau.edu/FG2007volume7/FG200728.pdf

7. (HS-1) Calculate the masses of Sun, Earth and Jupiter. You may
assume circular orbits. We further calculate with the following data:

the gravitational constant G = 6.67 · 10−11
m3

kg · s2

the Kepler constant for our solar system C =
T 2

R3
= 0.29 · 10−18

s2

m3

the acceleration by gravity on earth γ = 9.81
m

s2
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the earth’s radius R = 6, 370 km

Io’s orbital radius RI = 4.22 · 108m

Io’s orbital period TI = 1.77 d

Reason: Some Basic Astronomy.

Solution:

(a) Sun. The gravitational force of the sun on a planet is given by

FG = G
ms ·mp

R2
which is the radial force of the planet, i.e. FR =

4π2Rmp

T 2
. Both forces are equal so we get

ms =
4π2

G
·R

3

T 2
=

4π2

G · C
≈ 4π2

1.9343
·1029·kg · s

2

m3
·m

3

s2
≈ 2.041·1030 kg

(b) Earth. In case of our own planet, we have again FG = G
me ·m
R2

as

gravitational force of a mass m on the planet. It equals its weight
Fw = m · γ, hence we have

me =
γ ·R2

G
≈ 9.81 · 6, 370, 0002

6.67 · 10−11
· m ·m

2 · kg · s2

s2 ·m2

≈ 9.81 · 6.372

6.67
· 1023 kg ≈ 5.968 · 1024 kg

(c) Jupiter. The calculations for Jupiter (and Io) is analog to that of
the Sun (and Jupiter). Hence we get

mj =
4π2

G
· R

3
I

T 2
I

≈ 4π2

6.67
· 1011 · 4.223

1.772
· 1024 · 1

8.642
· 10−8 · kg · s

2 ·m3·
m3 · s2

≈ 1.9 · 1027 kg

8. (HS-2) A car drives at 72 km/h directly past a resting observer when
the driver presses its horn. By what interval does the pitch of the horn
change as the car passes the observer? (Speed of sound s = 340 m/s.)

Reason: Doppler Effect.

Solution: The car’s speed is 72 km/h= 20 m/s. Let the horn’s pitch
be ν. If the car approaches the observer, he will hear a frequence

ν ′ =
ν

1− v

s
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If the car evicts the observer, he will hear a frequence

ν ′′ =
ν

1 +
v

s

For the interval we get

ν ′

ν ′′
=
s+ v

s− v
=

360 m/s

320 m/s
=

9

8

which is a full musical tone.

9. (HS-3) Consider the sphere S2 = { (x, y, z) |x2 + y2 + z2 = r2 } and
a point P ∈ S2. Determine the set of all center points of all chords
starting in P .

Reason: Geometry.
Vector calculations are easier than coordinate calculations.

Solution: The variable endpoint X of the chord is on the sphere, so
for its position vector we have ~x2 = r2. The position vector of the
center of the chord PX is thus

~c =
~p+ ~x

2
⇐⇒ ~x = 2~c− ~p

hence r2 = (2~c − ~p)2 or

(
~c− ~p

2

)2

=
r2

4
. So the set of points we were

looking for are all on a sphere with center OP/2 = ~p/2 and radius r/2.
All points of this sphere are on the other hand a center of some chord of
the original sphere with endpoint P , since we can go back. The point
P itself is the center of the chord PP .

10. (HS-4) At the monthly meeting of former mathematics students, six
members choose a real number a, which has to be guessed by a seventh
mathematician who had left the room before. He gets the following
information after he returned:

(1) a is rational.
(2) a is an integer divisible by 14.
(3) a is real and its square equals 13.
(4) a is an integer divisible by 7.
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(5) a is real and the inequality 0 < a3 + a < 8, 000 holds.
(6) a is even.

He is told, that all pairs (1, 2), (3, 4), (5, 6) always consist of a true and
a false statement. What is a?

Reason: Puzzle.

Solution: Assume a /∈ Z. Then (2),(4),(6) are false and thus (1),(3),(5)
true, which cannot be since

√
13 /∈ Q. This means that a ∈ Z

and statement (4) is true. As Z ⊆ Q statement (2) is false and
a is not divisible by 14, hence odd. So we have additionally that
0 < a3 + a = a(a2 + 1) < 8, 000. This implies a > 0. On the other
end it implies a < 20. But only a = 7 is odd and divisible by 7 in this
range. So (1),(4),(5) are true and (2),(3),(6) are false.
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4 September 2019

1. We all know that the geometric mean is less than the arithmetic mean.
I memorize it with 3·5 < 4·4. Now we consider the arithmetic-geometric
mean M(a, b) between the two others. Let a, b be two nonnegative real
numbers. We set a0 = a , b0 = b and define the sequences (ak) , (bk) by

ak+1 :=
ak + bk

2
, bk+1 =

√
akbk k = 0, 1, . . .

Then the arithmetic-geometric mean M(a, b) is the common limit

lim
n→∞

an = M(a, b) = lim
n→∞

bn

It is not hard to show that both sequences converge and that their
limit is the same by using the known inequality and the monotony of
the sequences.

Prove that for positive a, b ∈ R holds

T (a, b) :=
2

π

∫ π/2

0

dϕ√
a2 cos2 ϕ+ b2 sin2 ϕ

=
1

M(a, b)

Reason: The arithmetic-geometric mean.

Solution: We show T (a, b) = T

(
1

2
(a+ b),

√
ab

)
, the Laden transfor-

mation. By repetition and the limiting process we get

T (a, b) = T (M(a, b),M(a, b)) =
2

π

∫ π/2

0

dϕ

M(a, b)
=

1

M(a, b)

With t := b tanϕ we get

cos2 ϕ =
b2

b2 + t2
, sin2 ϕ =

t2

b2 + t2
, dϕ =

b

b2 + t2
dt

and

T (a, b) =
1

π

∫ +∞

−∞

dt√
(a2 + t2)(b2 + t2)

=
1

π

∫ 0

−∞

dt√
(a2 + t2)(b2 + t2)

+
1

π

∫ +∞

0

dt√
(a2 + t2)(b2 + t2)
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In the first integral we substitute t = x − C(x), in the second t =
x+ C(x) where we set C(x) =

√
ab+ x2 for short. Then

T (a, b) =
1

π

∫ +∞

−∞

{
1− x/C(x)√

[a2 + (x− C(x))2] · [b2 + (x− C(x))2]

+
1 + x/C(x)√

[a2 + (x+ C(x))2] · [b2 + (x+ C(x))2]

}
dx

=
1

π

∫ +∞

−∞

dx

C(x)

{
C(x)− x√

[a2 + (C(x)− x)2] · [b2 + (C(x)− x)2]

+
C(x) + x√

[a2 + (C(x) + x)2] · [b2 + (C(x) + x)2]

}

=
1

π

∫ +∞

−∞

dx

C(x)

{
C(x)2 − x2√

(C(x) + x)2 · [a2 + (C(x)− x)2] · [b2 + (C(x)− x)2]

+
C(x)2 − x2√

(C(x)− x)2 [a2 + (C(x) + x)2] · [b2 + (C(x) + x)2]

}

=
1

π

∫ +∞

−∞

dx

C(x)

{
ab√

(C(x) + x)2 · [a2b2 + (C(x)− x)4 + (a2 + b2) · (C(x)− x)2]

+
ab√

(C(x)− x)2 · [a2b2 + (C(x) + x)4 + (a2 + b2) · (C(x) + x)2]

}

=
1

π

∫ +∞

−∞

dx

C(x)

{
1√

(C(x) + x)2 + (C(x)− x)2 + (a2 + b2)

+
1√

(C(x)− x)2 + (C(x) + x)2 + (a2 + b2)

}

=
1

π

∫ +∞

−∞

2

C(x)
· dx√

2C(x)2 + 2x2 + a2 + b2

=
1

π

∫ +∞

−∞

2 dx√
2(ab+ x2)2 + 2x2(ab+ x2) + (a2 + b2)(ab+ x2)

=
1

π

∫ +∞

−∞

dx√
[((a+ b)/2)2 + x2] ·

[√
ab

2
+ x2

]
= T

(
a+ b

2
,
√
ab

)
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2. If A,B,C,D are four points in the plane, show that

det


0 1 1 1 1
1 0 |AB|2 |AC|2 |AD|2
1 |AB|2 0 |BC|2 |BD|2
1 |AC|2 |BC|2 0 |CD|2
1 |AD|2 |BD|2 |CD|2 0

 = 0

Reason: Cayley Menger Determinant.

Solution: If we view A,B,C,D as vectors in R2, then we have the
usual cosine rule |AB|2 = |A|2 + |B|2 − 2A · B, and similarly for all
the other distances. The matrix can then be written as M +M τ − 2G,
where

M =


0 0 0 0 0
1 |A|2 |B|2 |C|2 |D|2
1 |A|2 |B|2 |C|2 |D|2
1 |A|2 |B|2 |C|2 |D|2
1 |A|2 |B|2 |C|2 |D|2

 , G =


0 0 0 0 0
0 A · A A ·B A · C A ·D
0 B · A B ·B B · C B ·D
0 C · A C ·B C · C C ·D
0 D · A D ·B D · C D ·D


rkM = rkM τ = 1 and G = S · Sτ with the 5 × 2 matrix with rows
0, A,B,C,D, i.e. rkG ≤ 2. Hence rk (M +M τ − 2G) ≤ 1 + 1 + 2 =
4 < 5 and its determinant vanishes.

3. Let T ∈ B(H1,H2) a linear, continuous (= bounded) operator on
Hilbert spaces. Prove that the following are equivalent:

(a) T is invertible.

(b) There exists a constant α > 0, such that T ∗T ≥ αIH1 and TT ∗ ≥
αIH2 . A ≥ B means 〈(A−B)ξ , ξ〉 ≥ 0 for all ξ .

Reason: Linear Operators.

Solution:
(a) =⇒ (b) If T is invertible so is T ∗ : H2 −→ H1 with inverse
(T ∗)−1 = (T−1)∗. Define α := ||T−1||−2 = ||(T ∗)−1||−2. Note that for
ξ ∈ H1 we have

||ξ|| = |T−1(T (ξ))|| ≤ ||T−1|| · ||T (ξ)||

and therefore

〈T ∗Tξ , ξ〉H1 = 〈Tξ , Tξ〉H2 = ||Tξ||2 ≥ ||T−1||−2||ξ||2 = α〈ξ , ξ〉H1
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This shows 〈(T ∗T − αIH1) ξ , ξ〉 ≥ 0 for all ξ ∈ H1, so T ∗T − αIH1 ∈
B(H1) is positive. The positivity of TT ∗ − αIH2 ∈ B(H2) follows ac-
cordingly.

(b) =⇒ (a) Assume there is an α > 0 such that T ∗T ≥ αIH1 and
TT ∗ ≥ αIH2 . Thus

||Tξ||2 = 〈Tξ , Tξ〉 = 〈T ∗Tξ , ξ〉 ≥ α〈ξ , ξ〉 = ||ξ||2

and we get
||Tξ|| ≥

√
α||ξ|| ∀ ξ ∈ H1

On the one hand this shows that T is injective, and similar that T ∗ is
injective, too. Therefore

R(T ) = (ker(T ∗))⊥ = { 0H2 }⊥ = H2

and we only have to show that R(T ) is closed, hence T is also surjective.
Now since T is bounded, we have

C · ||ξ|| ≥ ||T || · ||ξ|| ≥ ||Tξ|| ≥
√
α · ||ξ||

which makes the norm on H1 equivalent to the by H2 induced norm on
R(T ). Thus R(T ) is again a Banach space and therefore closed.

4. Let a, b ∈ F be non-zero elements in a field of characteristic not two.
Let A be the four dimensional F−space with basis { 1, i, j,k } and the
bilinear and associative multiplication defined by the conditions that 1
is a unity element and

i2 = a , j2 = b , ij = −ji = k .

Then A =

(
a, b

F

)
is called a (generalized) quaternion algebra over F.

Show that A is a simple algebra whose center is F.

Reason: Associative Algebras.

Solution: For convenience we use the Lie bracket for [x, y] = xy− yx .
If x = c0 + c1i + c2j + c3k then

[i, x] = (2ac3)j + (2c2)k

[j, x] = (−2bc3)i + (−2c1)k

[k, x] = (2bc2)i + (−2ac1)j
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In case x ∈ Z(A) we get c3 = c2 = c1 = 0 and vice versa, hence Z(A) =
F. Now let { 0 } 6= I E A be a non-zero ideal of A and 0 6= x ∈ I . As a
two sided ideal we have

[j, [i, x]] = (−4bc2)i ∈ I
[k, [j, x]] = (4abc3)j ∈ I
[i, [k, x]] = (−4ac1)k ∈ I

If one of the coefficients c1, c2, c3 is unequal zero, then I contains a unit
of A and thus I = A. If c1 = c2 = c3 = 0 then x 6= 0 implies c0 6= 0
and I again contains a unit. In all cases we have A = I.

5. Prove that the quaternion algebra

(
a, 1

F

)
∼= M(2,F) is isomorphic to

the matrix algebra of 2× 2 matrices for every a ∈ F− { 0 } .

Reason: Quaternions.

Solution: Direct calculation of the multiplication tables by setting

e11 =
1

2
(1− j)

e22 =
1

2
(1 + j)

e12 =
1

2a
(i− k)

e21 =
1

2
(i + k)

6. Show that there are infinitely many primes of the form 4k+ 3 , k ∈ N0.

Reason: Number Theory.

Solution: Assume there are only finitely many primes of the form
4k + 3: p1, . . . , pn . Set z := 4p1 · . . . · pn − 1 . Then z = 4k + 3 with
k = p1 · . . . ·pn−1 ∈ N0 . Let z = q1 · . . . ·qm be the prime decomposition
of z. Since z is odd, qi 6= 2 for all i ∈ { 1, . . . ,m }. This all qi are either
of the form qi = 4ri + 1 or of the form qi = 4si + 3 with ri, si ∈ N0 .
Assume all qi were of the form 4ri + 1, then 3 ≡ z ≡ 1 mod 4 which is
impossible. Therefore at least one qi has the form 4si + 3 . But for this
prime we have qi ∈ { p1, . . . , pn }, say qi = pj . Now

pj = qi | q1 · . . . · qm = z = 4p1 · . . . · pn − 1
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which is impossible. Hence there are infinitely many primes of the form
4k + 3 .

7. Do
∞∑
n=0

(−1)n√
n+ 1

and

(
∞∑
n=0

(−1)n√
n+ 1

)2

converge or diverge?

Reason: Product of converging series can diverge.

Solution:
∞∑
n=0

(−1)n√
n+ 1

converges according to the Leibniz criterion,

because an :=
1√
n+ 1

is strictly monotone decreasing. For the Cauchy

product
∞∑
n=0

cn =

(
∞∑
n=0

an

)2

=

(
∞∑
n=0

(−1)n√
n+ 1

)2

we get

cn =
n∑
k=0

an−kak

=
n∑
k=0

(−1)n−k√
n− k + 1

· (−1)k√
k + 1

= (−1)n
n∑
k=0

1√
n− k + 1 ·

√
k + 1

From 0 ≤ (
√
a−
√
b)2 we get

√
a
√
b ≤ 1

2
(a+ b) for a, b > 0 and so

|cn| =
n∑
k=0

1√
n− k + 1 ·

√
k + 1

≥
n∑
k=0

1
1
2
(n− k + 1 + k + 1)

=
n∑
k=0

2√
n+ 2

=
2(n+ 1)

n+ 2

=
2 + 2

n

1 + 2
n

→ 2 (n→∞)

Hence (cn) isn’t a null sequence and
∞∑
n=0

cn diverges.
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8. Consider the curve γ : R 7−→ C , γ(t) = cos(πt)·eπit . Find the minimal
period of γ (a), prove that γ(R) ≡ { (x, y) ∈ R2 |x2 + y2 − x = 0 } (b),
show that γ(R) is symmetric to the x−axis (c), and parameterize γ
with respect to its arc length (d).

Reason: Differential Geometry.

Solution: We have a natural parameterization by

γ(t) = (cos2(πt), sin(πt) cos(πt))

and thus γ(t+2) = γ(t) . Since sin(πt) cos(πt) = 1
2

sin(2πt) we even get
γ(t) = γ(t+ 1) , and thus a minimal period of 1.

Now let (x, y) ∈ γ(R) ⊆ R2. Then

x2 + y2 − x = cos4(πt) + sin2(πt) cos2(πt)− cos2(πt)

= cos2(πt) ·
(
cos2(πt) + sin2(πt)− 1

)
= 0

If (x, y) ∈ R2 with x2 + y2 − x = 0, then we have to find a t ∈ R with
γ(t) = (x, y) .

x2 + y2 − x = 0⇐⇒ x =
1

2
±
√

1

4
− y2

Since (x, y) exists by assumption,
1

4
−y2 ≥ 0 and x ∈ [0, 1] which allows

us to chose x = cos2(πt).

y2 = x−x2 = cos2(πt)−cos4(πt) = cos2(πt)(1−cos2(πt)) = cos2(πt) sin2(πt)

For the positive solution we are done. If y = − cos(πt) sin(πt) we
observe that y = − cos(πt) sin(πt) = cos(−πt) sin(−πt). As x =
cos2(πt) = cos2(−πt), we also have shown the existence of t. In combi-
nation we have γ(R) ≡ { (x, y) ∈ R2 |x2 + y2 − x = 0 } . As y,−y yield
the same point, the symmetry with respect to the x−axis is obvious.
By

x2 + y2 − x = 0⇐⇒
(
x− 1

2

)2

+ y2 =
1

4
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we see, that γ is the circle with center (1
2
, 0) and radius 1

2
. The arc

length is given by

s(t) =

∫ t

0

||γ̇(t)|| dt

=

∫ t

0

√
(−π sin(πt)eπit + iπ cos(πt)eπit) ·

·
√

(−π sin(πt)e−πit − iπ cos(πt)e−πit) dt

=

∫ t

0

√
π2 sin2(πt) + π2 cos2(πt) dt

=

∫ t

0

π dt

= πt

and the inverse is Φ(s) = s
π
. Then we have p := γ ◦ Φ : R −→ C with

p(s) = γ(Φ(s)) = γ
( s
π

)
= cos(s) · eis

9. Let γ : I −→ Rn be a regular curve with unit tangential vector T =
d

dt
γ . A (orthonormal) frame is a (smooth) C∞− transformation F :

I −→ SO(n) with F (t)e1 = T (t) where { ei } is the standard basis of
Rn . The pair (γ, F ) is called a framed curve, and the matrix A given

by
d

dt
F = F ′ = FA is called derivation matrix of F .

Let F0 : R −→ SO(n) be a frame of a regular curve γ : R −→ Rn.
Show that

(a) If F : R −→ SO(n) is another frame of γ, then there exists a
transformation Φ : R −→ SO(n) with Φ(t)e1 = e1 for all t ∈ R
and F = F0Φ .

(b) If on the other hand Φ : R −→ SO(n) is a smooth transformation
with Φ(t)e1 = e1 , then F := F0 · Φ defines a new frame of γ.

(c) If A0 is the derivation matrix of F0, and A the derivation matrix
of the transformed frame F := F0Φ with Φ as above, then

A = Φ−1A0Φ + Φ−1Φ′

Reason: Gauge Transformation.

Solution:
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(a) We define Φ by Φ(t) := F0(t)
−1 · F (t) which is a transformation

R −→ SO(n). Since both are frames of the same curve γ we get
for all t ∈ R

F (t)e1 = F0(t)e1 = T (t) =⇒ Φ(t)e1 = F0(t)
−1 · F (t)e1 = e1

(b) F is obviously a transformation from R to SO(n) with

F (t)e1 = F0(t) · Φ(t)e1 = F0(t)e1 = T (t)

and F is a frame of γ.

(c) We calculate

A = F−1F ′ = (F0Φ)−1(F0Φ)′ = Φ−1F−10 (F ′0Φ + F0Φ
′) = Φ−1A0Φ+Φ−1Φ′

10. (HS-1) Show that the number of ways to express a positive integer n
as the sum of consecutive positive integers is equal to the number of
odd factors of n.

Reason: Partitions.

Solution: From n = r+ (r+ 1) + . . .+ (r+ k) = 1
2
k(k + 1) + (k + 1)r

we get 2n = (k + 1)(2r + k). Now either k + 1 or 2k + r is odd, so
every odd factor of n results in a partition of n as sum of consecutive
positive integers. If we have two decompositions 2n = (k+1)(2r+k) =
(l + 1)(2s + l) and k + 1 = l + 1 or 2r + k = 2s + l are the same odd
numbers, then k = l in both cases. If we have k + 1 = 2s + l then

l+ 1 = k+ 2− 2s =
2n

2s+ l
= 2r+ k and r = 1− s or r, s ∈ { 0, 1 }. For

(r, s) = (0, 1) we get 2n = (k + 1)k = (l + 1)(k + 1) or k = l + 1, and
for (r, s) = (1, 0) we have 2n = (l + 1)l = l(2 + k) or l = k + 1 which
is again the same odd factor as 2n = (l + 2)(l + 1) = (k + 1)(k + 2) is
the same decomposition.

11. (HS-2) How many solutions in non-negative integers are there to the
equation:

x1 + x2 + x3 + x4 + x5 + x6 = 32

Reason: Partitions.

Solution: Assume we have 37 boxes in which we place 32 pebbles and
5 partition sticks. Then we have

(
37
5

)
= 435, 897 possibilities, if we
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allow zero (stick in the first box) as a summand.

12. (HS-3) Let A,B,C and D be four points on a circle such that the lines
AC and BD are perpendicular. Denote the intersection of AC and
BD by M . Drop the perpendicular from M to the line BC, calling the
intersection E. Let F be the intersection of the line EM and the edge
AD. Then F is the midpoint of AD.
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Reason: Brahmagupta Theorem.

Solution: We need to prove that AF = FD. We will prove that both
AF and FD are in fact equal to FM . By the first theorem of chords
in an inscribed quadrilateral: AM · CM = BM ·DM we see that the
slopes of AD and BC are reciprocal. Thus a rotary reflection maps
BC on AD, i.e. the triangles 4AMD and 4BMC are similar. Hence
α = η , ρ = µ. Since η + ξ = β + ξ = π/2 we get β = η = α and
4AMF is an isosceles triangle, i.e. AF = FM .

ϕ = π − α− β
= π − 2β

= ψ + ϕ− 2β

and ψ = 2β. Hence ρ = π − 2β − ξ = π/2 − β = ξ so 4FDM is also
an isosceles triangle, i.e. FM = FD.
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13. (HS-4) Prove that every non negative natural number n ∈ N0 can be
written as

n =
(x+ y)2 + 3x+ y

2

with uniquely determined non negative natural numbers x, y ∈ N0 .

Reason: Puzzle.

Solution: We set s = x+ y, so s ≥ x ≥ 0 and for a given s we get as
possible values for n the numbers

n =
s2 + s

2
+ x ∈

{
s2 + s

2
,
s2 + s

2
+ 1, . . . ,

s2 + s

2
+ s

}
⊆ N0

If we define Is :=

[
s2 + s

2
,
s2 + s

2
+ s

]
∩ N0 we observe that

(
s2 + s

2
+ s

)
+ 1 =

(s+ 1)2 + (s+ 1)

2

and the Is are a disjoint coverage of N0 . Thus all n belong to some Is
and it cannot belong to two.

14. (HS-5) Calculate

S =

∫ 3

1
2

1√
x2 + 1

log(x)√
x

dx +

∫ 2

1
3

1√
x2 + 1

log(x)√
x

dx

Reason: Multiplicative Integration Symmetry.

Solution: The functions are continuous in the area of integration.
Assume that the anti-derivative is F (x). Then we have to calculate
S = F (3)− F

(
1
2

)
+ F (2)− F

(
1
3

)
= F (3)− F

(
1
3

)
+ F (2)− F

(
1
2

)
and

we can calculate the integrals

In =

∫ n

1
n

1√
x2 + 1

log(x)√
x

dx =

∫ n

1
n

1√
x+ 1

x

log(x)

x
dx

Set y = 1
x
. This means

dy

dx
= − 1

x2
= −y2. We also have to switch the

44



https://www.physicsforums.com/ 07/19-12/19

integration bounds x = n to y = 1
n

and x = 1
n

to y = n. Thus

In =

∫ 1
n

n

y√
1
y

+ y
log

(
1

y

)
−1

y2
dy

=

∫ 1
n

n

1√
1
y

+ y
log (y)

1

y
dy

= −
∫ n

1
n

1√
1
y

+ y

log(y)

y
dy

= −
∫ n

1
n

1√
y
(

1
y

+ y
) log(y)
√
y

dy

= −
∫ n

1
n

1√
1 + y2

log(y)
√
y

dy

= −
∫ n

1
n

1√
x2 + 1

log(x)√
x

dx

= −In

If the integral equals its negative, then it has to be zero for any positive
n. Hence S = 0 .
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5 August 2019

1. Three identical airplanes start at the same time at the vertices of an
equilateral triangle with side length L. Let’s say the origin of our
coordinate system is the center of the triangle. The planes fly at a
constant speed v above ground in the direction of the clockwise next
airplane. How long will it take for the planes to reach the same point,
and which are the flight paths?

Reason: Mechanics.

Solution: The side length of the triangle at t = 0 is L(0) = L. For the

position ~r(t) of the first airplane we have |~r(0)| = r(0) =
2

3
L cos

π

6
=

L√
3
. The distance between the airplanes are the same at any point in

time, because of the symmetry, i.e. the airplanes will always mark the
vertices of an equilateral triangle with its center at the origin. Thus
the angle between the velocity ~v(t) and the position ~r(t) is always

^(~v(t), ~r(t)) = ψ(t) = ψ(0) = ψ = π − π

6

Thus we have

~v(t) = ~̇r(t)

~r(t))~v(t) = ~r(t)~̇r(t)

r · v · cosψ =
1

2

d

dt
(~r(t)~r(t)

r · v · cosψ =
1

2

dr2

dt

r · v · cosψ = r
dr

dt
dr

dt
= −v

√
3

2

r(t) =
L√
3
− v
√

3

2
t

Hence r(tf ) = 0 implies tf =
2L

3v
.

To get the flight path we decompose ~v(t) in components parallel and
perpendicular to ~r(t). The perpendicular component is |v⊥| = v·sinψ =
v

2
so we have the angular velocity ω̇(t) =

v⊥(t)

r(t)
. We parameterize the
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motion by cylindric coordinates ~r(t) = (r(t) cosϕ(t) , −r(t) sinϕ(t) , 0)τ

and receive the momentary rotation angle by the integration

ϕ(t) = ϕ(0) +

∫ t

0

ω(t′) dt′

= ϕ(0) +
v

2

∫ t

0

1

r(t′)
dt′

= ϕ(0) +
v

2

∫ t

0

1
L√
3
− v

√
3
2
t′
dt′

= ϕ(0) +

∫ t

0

1
2L√
3v
−
√

3t′
dt′

= ϕ(0) +
1√
3

∫ t

0

1
2L
3v
− t′

dt′

= ϕ(0) +
1√
3

log

(
2L
3v

2L
3v
− t

)

= ϕ(0) +
1√
3

log

(
r(0)

r(t)

)
so the flight path is the logarithmic spiral with

r(t) = r(0) · e−
√
3(ϕ(t)−ϕ(0))

The distance towards the center decreases by a factor of e−2π
√
3 ≈

1.88 · 10−5 with every complete turn.

2. The Schwarzian derivative of a holomorphic function f is given by

Sf (z) = { f, z } :=
d

dz

(
f
′′
(z)

f ′(z)

)
− 1

2

(
f
′′
(z)

f ′(z)

)2

=
f
′′′

(z)

f ′(z)
− 3

2

(
f
′′
(z)

f ′(z)

)2

Prove a chain rule for the Schwarzian derivative and show that

{ f, z } < 0 ∧ {h, z } < 0 =⇒ { f ◦ h, z } < 0

Reason: Dynamical Systems.

Solution: The formula we want to prove is

Sf◦h(z) = Sf (h(z)) · (h′(z))2 + Sh(z)

47



https://www.physicsforums.com/ 07/19-12/19

(f ◦ h)′(z) = f ′(h(z))h′(z)

(f ◦ h)′′(z) = f ′′(h(z))(h′(z))2 + f ′(h(z))h′′(z)

(f ◦ h)′′′(z) = f ′′′(h(z))(h′(z))3 + 3f ′′(h(z))h′(z)h′′(z) + f ′(h(z))h′′′(z)

Sfh(z) =
(fh)

′′′
(z)

(fh)′(z)
− 3

2

(
(fh)

′′
(z)

(fh)′(z)

)2

=
f ′′′(h(z))(h′(z))3 + 3f ′′(h(z))h′(z)h′′(z) + f ′(h(z))h′′′(z)

f ′(h(z))h′(z)

− 3

2

(
f ′′(h(z))(h′(z))2 + f ′(h(z))h′′(z)

f ′(h(z))h′(z)

)2

=
f ′′′(h(z))

f ′(h(z))
· (h′(z))2 + 3

f ′′(h(z))

f ′(h(z))
· h′′(z) +

h′′′(z)

h′(z)

− 3

2

(
f ′′(h(z))

f ′(h(z))
· h′(z) +

h′′(z)

h′(z)

)2

= Sf (h(z)) · (h′(z))2 + Sh(z)

+ 3
f ′′(h(z))

f ′(h(z))
· h′′(z)− 3

2
· 2 · f

′′(h(z))

f ′(h(z))
· h′′(z)

= Sf (h(z)) · (h′(z))2 + Sh(z)

and from Sf (z) < 0 and Sh(z) < 0 we thus have Sfh(z) < 0 .
Schwarzian derivatives are used in dynamical systems to investigate
attractors, in flows of surfaces, or in the theory of Schwarz-Christoffel
mappings.

3. (HS-1) David drives to work every working day by car. Outside towns
he drives at an average speed of 180 km/h. On the 10 km in town, he
drives at an average speed of 40 km/h. As a result, he is often too fast
and gets a ticket. Meanwhile he has realized that things can not go
on like this and he decides to reduce his average speed by 20 km/h in
town as well as outside. How long is his way to work, if this reduces
his average speed by 40 km/h on total?

Reason: Puzzle.

Solution: Let y be the length of his path in town, and x outside of
town, each measured in km. We will later set y = 10 . Originally he
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needed
x

180
+
y

40
hours, and now he needs

x

160
+
y

20
hours. In order that

the average speed decreases by exactly 40 km/h the following equation
has to hold:

x+ y
x

180
+

y

40

− x+ y
x

160
+

y

20

= 40

40 = (x+ y) ·
(

180 · 40

40x+ 180y
− 160 · 20

20x+ 160y

)
1 = (x+ y) ·

(
9

2x+ 9y
− 4

x+ 8y

)
(2x+ 9y) · (x+ 8y) = (x+ y) · (9x+ 72y − 8x− 36y)

2x2 + 72y2 + 25xy = x2 + 36y2 + 37xy

x2 + 36y2 − 12xy = 0

(x− 6y)2 = 0

So a necessary and sufficient condition is x = 6y = 60 km and his total
way is 70 km long.

4. (HS-2) Show that 2x6 + 3y6 = z3 has no other rational solutions than
x = y = z = 0 .

Reason: Puzzle.

Solution: For an integer p the cube has only possible remainders
{ 0, 1, 6 } from division by 7 so the remainder of p6 will be either one
or zero.

p = 2n · (2k + 1) =⇒ p3 = 8n · (2k + 1)3 ≡ r3 mod 7

where r is odd, i.e. r3 ∈ { 13, 33, 53, 73 } ≡ { 0, 1, 6 }mod 7 . Hence for
any integer solution

{ 0, 1, 6 } 3 z3 = 2x6 + 3y6 ∈ { 0, 2, 3, 5 }mod 7

and z is divisible by 7 and then all are: x, y, z ≡ 0 mod 7.

Let q = max{ p ∈ N | 7p|x and 7p|y }. Then 7 6q|z3, i.e. 7 2q|z and( x
7 q
,
y

7 q
,
z

7 2q

)
is again an integer solution, so 7 divides all of them,

which is impossible by maximality of q. This shows that (0, 0, 0) is the
only integer solution.

Now let (x, y, z) be with rationals and L the least common multiple of
the denominators of x, y, z. Then (Lx, Ly, L2z) is an integer solution,
i.e. x = y = z = 0 .
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5. (HS-3) Let x, yz ∈ R− { 0 } such that

x+
y

z
= 2 , y +

z

x
= 2 , z +

x

y
= 2

Show that s := x + y + z can only have the values 3 or 7. You do not
need to solve the equation system.

Reason: Puzzle.

Solution: The equations without denominators are

xz + y = 2z , yx+ z = 2x , zy + x = 2y

hence xz + yx + zy = 2(z + x + y) − (y + z + x) = x + y + z = s . In
the second step we multiply them

1 =
y

z
· z
x
· x
y

= (2− x)(2− y)(2− z)

= 8− 4(x+ y + z) + 2(xy + yz + zx)− xyz
= 8− 4s+ 2s− xyz
=⇒ xyz = 7− 2s

From the first step we also get

xzy + y2 = 2yz , xyz + z2 = 2xz , xyz + x2 = 2xy

and thus

3xyz + x2 + y2 + z2 = 2(xy + xz + yz)

3xyz + (x+ y + z)2 = 4(xy + xz + yz)

3xyz + s2 = 4s

Now we have 3(7− 2s) + s2 = 4s or (s− 3)(s− 7) = 0 and s can only
have the values s ∈ { 3 , 7 } .

There are actually only 4 solutions of the equation system:

(1, 1, 1), (
√

7 cot
π

7
,
√

7 cot
2π

7
,
√

7 cot
4π

7
)

and the cyclic permutations. They all solve (t−1)(t3−7t2+7t+7) = 0 .

50



https://www.physicsforums.com/ 07/19-12/19

6 July 2019

1. (a) Prove that every symmetric and positive definite matrix A ∈
M(n,R) can be uniquely written as A = L · Lτ , where L is a
lower triangular matrix with positive diagonal elements.

(b) Calculate L for A =


4 2 4 4
2 10 17 11
4 17 33 29
4 11 29 39

.

Reason: Cholesky Decomposition

Solution:

(a) Induction over n. The statement is obviously true for n = 1. Let
it be true for matrices in M(n− 1,R). We will write

A =

[
d vτ

v G

]
Since A is positive definite, xτAx > 0 for all x 6= 0. For x = ei :=
(0, . . . , 0, 1, 0, . . . , 0)τ we get aii = eτiAei > 0. Therefore we have
d > 0.

With H = G− vvτ

d
· In−1 we get

A =

[
d vτ

v G

]
=

[√
d 0
v√
d

In−1

]
·
[
1 0
0 H

]
·
[√

d vτ√
d

0 In−1

]
H is symmetric by definition and also positive definite:

0 <
[
−xτv

d
xτ
]
·
[
d vτ

v G

]
·
[
−xτv

d

x

]
= xτ

(
G− vvτ

d

)
x = xτHx

Thus we can write H = LHL
τ
H per induction assumption with a

lower triangular matrix with positive diagonal elements. Finally
we get

A =

[√
d 0
v√
d

In−1

]
·
[
1 0
0 LH

]
·
[
1 0
0 LτH

]
·
[√

d vτ√
d

0 In−1

]

=

[√
d 0
v√
d

LH

]
·
[√

d vτ√
d

0 LτH

]
= LLτ
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(b) L =


2 0 0 0
1 3 0 0
2 5 2 0
2 3 5 1


2. Let L ⊆ H be a nonempty, closed, and convex set in a Hilbert space.

Prove that there is an element of minimal norm in L. Reason: Com-
pleteness Properties.

Solution: Let d := inf{ ||f || : f ∈ L }. Then there is a sequence
(fn) ⊆ L such that limn→∞ ||fn|| = d. By direct computation∣∣∣∣∣∣∣∣fn − fm2

∣∣∣∣∣∣∣∣2 = 2

∣∣∣∣∣∣∣∣fn2
∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣fm2
∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣fn + fm

2

∣∣∣∣∣∣∣∣2
≤ 2

∣∣∣∣∣∣∣∣fn2
∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣fm2
∣∣∣∣∣∣∣∣2 − d2

where the inequality follows from convexity. Therefore

||fn − fm||2 ≤ 2||fn||2 + 2||fm||2 − 4d2

and so
lim sup
n,m→∞

||fn − fm||2 ≤ 2d2 + 2d2 − 4d2 = 0

which shows that (fn) is a Cauchy sequence and as L is closed and
therewith a complete subset in H, we conclude that there is f ∈ L
with limn→∞ fn, which implies ||f || = limn→∞ ||fn|| = d.

3. (HS-1) Is N := 2139 + 3921 divisible by 45? Why, why not?

Reason: Puzzle.

Solution: 45 = 9 · 5 and 9|N , so it remains to show that 5|N . The
last digit of 21n is 1 and the last digit of 392n+1 is 9 for any natural
number n. Hence 10|N and especially 5|N .

4. (HS-2) Let 0 < u, v, w < 1. Show that among the numbers u(1 −
v) , v(1− w) , w(1− u) is at least one value not greater than 1

4
.

Reason: Puzzle.

Solution: Let us assume

uvw(1− u)(1− v)(1− w) >

(
1

4

)3

=
1

64
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But u(1 − u) = 1
4
− (u − 1

2
)2 ≤ 1

4
and likewise v(1 − v) ≤ 1

4
, and

w(1− w) ≤ 1
4
. Multiplying all three inequalities yields

u(1− u)v(1− v)w(1− w) ≤ 1

64

against our assumption.

5. (HS-3) What is the ratio between the red and the blue area?

The points P and Q are anywhere on their edges.

Reason: Geometry.

Solution: Let’s first label the areas and call the area of the square X.

Since height and baseline of both triangles equal the side length of the
square, their area is half of X:

A+E+H =
1

2
X = A+F+G = B+C+D+F+G = B+C+D+H+E

This means
A

B + C +D
=

A
1
2
X − F −G

=
A

A
= 1
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6. (HS-4) In what ratio does the circumference of the circle divide the left
and right sides of the square?

Reason: Geometry.

Solution: Let’s first label the graphic.

Pythagoras for ∆ORQ gives us r2 =

(
b

2

)2

+
(s

2

)2
and

s = AD = AB = EOL = EO + OL =
b

2
+ r

Thus

(
s− b

2

)2

=

(
b

2

)2

+
(s

2

)2
or bs =

3

4
s2 or

s

b
=

4

3
.

From a+ b = s we get
a

b
=

1

3
.
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