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1. Let G be a group with 3129 elements. Prove it is solvable.

Solution: 3129 = 3 · 7 · 149 is the product of three distinct primes,
hence solvable. See

https://www.physicsforums.com/threads/math-challenge-

february-2021.999180/page-2#post-6462158

2.

I(a) :=

∫ 1

0

(
log x

a+ 1− x
− log x

a+ x

)
dx ; a ∈ C\[−1, 0]

Solution: Define F : ]0, 1] −→ C by

F (x) :=
x log x

a+ x
− log(a+ x)

then

F ′(x) =
(a+ x)(1 + log x)− x log x

(a+ x)2
− 1

a+ x

=
a+ a log x+ x+ x log x− x log x− a− x

(a+ x)2

=
a log x

(a+ x)2

=⇒

a

∫ 1

0

log x

(a+ x)2
dx = F (1)− F (0+) = − log(a+ 1)− (− log a)

= log a− log(a+ 1)

If we define G : ]0, 1] −→ C by

G(x) :=
x log x

a+ 1− x
+ log(a+ 1− x)

then

G′(x) =
(a+ 1− x)(1 + log x) + x log x

(a+ 1− x)2
− 1

a+ 1− x

=
(a+ 1) log x

(a+ 1− x)2

=⇒

(a+ 1)

∫ 1

0

log x

(a+ 1− x)2
= G(1)−G(0+) = log a− log(a+ 1)

2
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Putting those integrals together and integrating by a gives∫ (∫ 1

0

(
log x

(a+ x)2
− log x

(a+ 1− x)2

)
dx

)
da∫ 1

0

(∫ (
log x

(a+ x)2
− log x

(a+ 1− x)2

)
da

)
dx

=

∫ 1

0

(
− log x

a+ x
+

log x

a+ 1− x
+ C

)
dx = I(a) + C ′

=

∫ ((
1

a
− 1

a+ 1

)
· (log a− log(a+ 1))

)
da

=
1

2
(log a− log(a+ 1))2 + C ′′

and we get I(a) =
1

2
(log a− log(a+ 1))2 + C. Note that the limit

lima→∞ I(a) = 0, i.e. C = 0, hence

I(a) =
1

2
(log a− log(a+ 1))2 =

1

2
log2 a

a+ 1

3. Let g be a Lie algebra over a field of characteristic not 2. Prove that

A(g) = {α ∈ gl(g) | [α(X), Y ] + [X,α(Y )] = 0 for all X, Y ∈ g}

is a Lie algebra. Determine A(B) for the two-dimensional non-abelian
Lie algebra B.

Solution: B = 〈X, Y | [X, Y ] = Y 〉. Let α(X) = aX+ bY and α(Y ) =
cX + dY. Then the only defining equation is

Y = [aX + bY, cX + dY ] = (ad− bc)Y ⇒ ad− bc = 1⇒ A(B) ∼= sl(2)

which is a Lie algebra. To prove the general case, we only have to verify
that [α, β] := αβ − βα ∈ A(g) since A(g) is obviously a vector space,
and the Jacobi identity holds for the commutator multiplication.

[[α, β](X), Y ] + [X, [α, β](Y )] = [α(β(X)), Y ]− [β(α(X)), Y ]

+ [X,α(β(Y ))]− [X, β(α(Y ))]

= −[β(X), α(Y )] + [α(X), β(Y )]

− [α(X), β(Y )] + [β(X), α(Y )]

= 0

3
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4. Show that a path connected set is connected but not vice versa and
not necessarily simply connected.

Solution: A set A of a topological space X is path connected, if for
any two points a, b ∈ A there is a continuous curve γ : [0, 1] → A
with γ(0) = a and γ(1) = b that is entirely in A. If any such curve
is null-homotopic, then A is simply connected. A is connected, if it
cannot be written as disjoint union of two nonempty, open sets.

Let A ⊆ X be path connected and A = U ∪̇V a disjoint union of open
sets U, V 6= ∅. Choose a ∈ U, b ∈ V and γ(t) a continuous path that
connects the two points. Then γ−1(U), γ−1(V ) ⊆ R are disjoint, open
sets. Since

[0, 1] ⊆ γ−1(U)∪̇γ−1(V ) = γ−1(U ∪̇V ) = γ−1(A)

is a connected interval, we have w.l.o.g. [0, 1] ⊆ γ−1(U). But this
contradicts V 3 v = γ(1) 6∈ U.

The opposite is false. Consider

A = {(0, y) ∈ R2 | − 1 ≤ y ≤ 1}︸ ︷︷ ︸
=:U

∪{(x, sin(x−1)) ∈ R2 |x > 0}︸ ︷︷ ︸
=:V

equipped with the standard Euclidean topology of R2, then there is no
continuous path from (0, 0) ∈ U to (π−1, 0) ∈ V within A. However,
every open neighborhood of (0, 0) always contains a point of V, hence
A is connected.

The unit disc D := {(x, y) ∈ R2 |x2 + y2 ≤ 1} in R2 is path connected,
i.e. connected, too. If we cut out B := {(x, y) ∈ R2 |x2 + y2 ≤ 1/4},
then D\B is still path connected, but not null-homotopic.

5. ∫ π
4

0

log(1 + tanx) dx

Solution:
√

2 cos
(π

4
− x
)

=
√

2 cos
(π

4

)
cos(x) +

√
2 sin

(π
4

)
sin(x)

= cos(x) + sin(x) = cos(x) · cos(x) + sin(x)

cos(x)

= cos(x) · (1 + tan(x))

log(1 + tan(x)) = − log(cos(x)) + log(
√

2) + log
(

cos
(π

4
− x
))

4
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Substitute x ∈ [0, π/4] by u = −x+ π/4 ∈ [0, π/4] with du = −dx so∫ π
4

0

log
(

cos
(π

4
− x
))

dx = −
∫ 0

π
4

log(cos(u)) du

=

∫ π
4

0

log(cos(x)) dx

hence ∫ π
4

0

log(1 + tanx) dx =

∫ π
4

0

log(
√

2) =
π

8
log(2)

6. There are currently about 7, 808, 000, 000 people on earth. If we would
enumerate them all, how many of them would have a prime number?

Solution: A little bit more than the population of the United States
of America:

π(x) ∼ x

log(x)

π(7, 808, 000, 000) ≈ 342, 780, 659

7. Let M = R2 and G = R and consider the map

ψ(ε, (x, y)) :=

(
x

1− εx
,

y

1− εx

)
defined on

U =

{
(ε, (x, y)) | ε < 1

x
for x > 0, or ε >

1

x
for x < 0

}
⊆ R× R2

Show that ψ defines a local group action of G on the manifold M. Does
it have a global counterpart on R2?

Solution: Whenever defined, we get

ψ(δ, ψ(ε, (x, y))) = ψ

(
δ,

(
x

1− εx
,

y

1− εx

))
=

(
x/(1− εx)

1− δx/(1− εx)
,

y/(1− εx)

1− δx/(1− εx)

)
=

(
x

1− εx− δx
,

y

1− εx− δx

)
=

(
x

1− (δ + ε)x
,

y

1− (δ + ε)x

)
= ψ(δ + ε, (x, y))

5
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There is no global counterpart of this local action, because

lim
ε→1/x

|ψ(ε, (x, y))| =∞ for x 6= 0

Note: ψ occurs in the study of the heat equation. Its orbits consists of
the straight rays emanating from the origin, and the origin itself. The
action is regular on the punctured plane R2\{0}.

8. Give an example of a ring and a maximal ideal that isn’t a prime ideal.

Solution: If we have a commutative ring R with 1, then an ideal
P E R is prime if R/P is an integral domain, and an ideal M E R
is maximal if R/M is a field. Since all fields are integral domains, all
maximal ideals are prime in this case. Hence we consider a ring without
1 and set R = 2Z and M := 4Z.

Let R 6= M E I E R and r = 2m ∈ I\M. Then m is odd, say
m = 2k + 1, so I ⊇ IR = 4kZ+ 2Z = R, i.e. M is a maximal ideal.

We have 2m ·2n = 4nm ∈M, but 2m, 2n 6∈M for n,m odd and neither
is a unit, because R has none. This shows that M is not prime.

9. Let U, V ⊆ C open sets, ϕ : U −→ V a holomorphic function, and
γ : [0, 1] −→ U a closed, smooth path. Show that if γ is 0-homologue
in U, then ϕ ◦ γ is 0-homologue in V.

Solution: If γ is 0-homologue in U, then
∫
γ
f(z) dz = 0 by Cauchy’s

integral theorem. Thus∫
ϕ◦γ

g(z) dz =

∫ 1

0

g(ϕ(γ(t))) · (ϕ ◦ γ)′(t) dt

=

∫ 1

0

(g ◦ ϕ)(γ(t)) · ϕ′(γ(t)) · γ′(t) dt

=

∫
γ

g ◦ ϕ(z) · ϕ′(z)︸ ︷︷ ︸
holomorphic in U

dz = 0

so ϕ ◦ γ is 0-homologue in V again by Cauchy’s integral theorem (con-
verse version).

It is also possible to calculate it directly without using the backward

6
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direction of Cauchy’s integral theorem. Let z ∈ C\V. Then

2πi · indϕ◦γ(z) =

∫
ϕ◦γ

1

ζ − z
dζ =

∫ 1

0

ϕ′(γ(t)) · γ′(t)
ϕ(γ(t))− z

dt

=

∫
γ

ϕ′(ζ)

ϕ(ζ)− z
dζ = 0

The integration kernel
ϕ′(ζ)

ϕ(ζ)− z
in the last integral is holomorphic on

U since z 6∈ V ⊇ ϕ(U) and we can use the forward direction of Cauchy’s
integral theorem.

10. Examine convergence:

∞∏
n=2

(
1− 1

n

)
,
∞∏
n=3

(
1− 4

n2

)
Solution: All factors of both products are unequal zero. Set Pn =∏n

k=2

(
1− 1

k

)
for n ≥ 2.

Pn =
n∏
k=2

k − 1

k

telescope
=

1

n

=⇒ lim
n→∞

Pn = lim
n→∞

1

n
= 0

=⇒
∞∏
n=2

(
1− 1

n

)
does not converge, since the limit cannot be zero by definition of mul-
tiplication. (The logarithm gives a divergent series.)

Set Qn =
∏n

k=3

(
1− 4

k2

)
for n ≥ 3.

Qn =
n∏
k=3

k2 − 4

k2
=

n∏
k=3

k + 2

k
· k − 2

k
=

n∏
k=3

k + 2

k + 1
· k + 1

k
· k − 1

k
· k − 2

k − 1

=
n∏
k=3

k + 2

k + 1
·

n∏
k=3

k + 1

k
·

n∏
k=3

k − 1

k
·

n∏
k=3

k − 2

k

telescope
=

n+ 2

4
· n+ 1

3
· 2

n
· 1

n− 1
=
n2 + 3n+ 2

6n2 − 6n

7
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Hence

∞∏
n=3

(
1− 4

n2

)
= lim

n→∞
Qn = lim

n→∞

n2 + 3n+ 2

6n2 − 6n
=

1

6
.

11. The Heisenberg algebra can be viewed as

H =


0 x1 x3

0 0 x2

0 0 0

 : x1, x2, x3 ∈ R

 .

Calculate exp(H) for a matrix H ∈ H.

Solution: Let eij be the matrix with 1 at position (i, j) and 0 else-
where, and set N := x1e12+x2e23,M := e13. Then N2 = x1x2M,NM =
MN = 0 and M2 = 0. Thus

exp(N + x3M) =
∞∑
k=0

(N + x3M)

n!

= Id +(N + x3M) +
x1x2M

2!
+

0

3!
+ . . .

=

1 x1 x3 +
x1 + x2

2
0 1 x2

0 0 1

 ∈

1 ∗ ∗

0 1 ∗
0 0 1


the Heisenberg group.

12. ∫ ∞
−∞

| sin(αx)|
1 + x2

dx , α > 0

Solution: | sin(αx)| has the Fourier series

| sin(αx)| = 2

π
+

2

π

∞∑
n=1

(
1

2n+ 1
− 1

2n− 1

)
cos(2nαx)

8
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so∫ ∞
−∞

| sin(αx)|
1 + x2

dx = 2 + 2
∞∑
n=1

(
1

2n+ 1
− 1

2n− 1

)
1

π

∫ ∞
−∞

cos(2nαx)

1 + x2
dx︸ ︷︷ ︸

=e−2nα

= 2 + 2
∞∑
n=1

(e−α)2n

2n+ 1
− 2

∞∑
n=1

(e−α)2n

2n− 1

= 2
∞∑
n=0

(e−α)2n

2n+ 1
− 2

∞∑
n=0

(e−α)2n+2

2n+ 1

= 2
(
eα − e−α

) ∞∑
n=0

(e−α)2n+1

2n+ 1

= 4 sinh(α) artanh
(
e−α
)

13. Show that (n−1)! ≡ −1 mod n holds if and only if n is prime. Deter-
mine the first two primes for which even (p− 1)! ≡ −1 mod p2 holds.

Solution: We may assume n > 2. Let n = p be prime. The polynomial
xp−x = x(xp−1−1) has exactly p roots in Zp. It has only simple roots,
since (xp−x)′ = pxp−1−1 ≡ −1 mod p, and there are at most p roots.
Hence xp − x = x(x− 1) · . . . · (x− (p− 1)). Now

f(x) := xp−1 − 1 = (x− 1) · . . . · (x− (p− 1))

f(p) = pp−1 − 1 = (p− 1) · . . . · (p− (p− 1)) = (p− 1)! ≡ −1 mod p

Next let (n− 1)! ≡ −1 mod n and n = a · b with a, b > 1. Then

a | (n− 1)! =⇒ a · c = (n− 1)! ∧ n · d = (n− 1)! + 1

=⇒ ac = nd− 1 = abd− 1 =⇒ 0 ≡ −1 mod a  

and n is prime.

The small faculties are 1, 2, 6, 24, 120, . . . and we see, that 24 = 5! ≡ −1
mod 52. The next one is a bit harder to find. It is

(13− 1)! + 1

132
=

479, 001, 601

169
= 2, 834, 329

Up to now, there is only one more so called Wilson prime known,
namely 563. It is unknown whether there are more than that. If, then
they are greater than 20, 000, 000, 000, 000. The conjecture is, that there
are infinitely many Wilson primes.

9
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14. Determine all possible topologies on X := {a, b}, and which of them
are homeomorphic. Give an example of a topological space with more
than one element such that all sequences converge.

Solution: We always have the discrete topology

Td = {∅, {a}, {b}, X} = {{}, {a}, {b}, {a, b}}

where all subsets are open, and indiscrete or trivial topology

Tt = {∅, X} = {{}, {a, b}}

All topologies have to be close under all unions and all intersections
because we have a finite set X. Thus we get also

Ta = {∅, {a}, X} = {{}, {a}, {a, b}} , Tb = {∅, {b}, X} = {{}, {b}, {a, b}}

We want to prove, that only Ta and Tb are homeomorph by f(a) =
b , f(b) = a. We have f−1(∅) = ∅ ∈ Tb, f

−1({a}) = {b} ∈ Tb, and
f−1(X) = X ∈ Tb. The same is true for the inverse function, so f
and its inverse function are both continuous. Assume there would be
a homeomorphism f : Tt → Ta. Then f−1({a}) ∈ {∅, X}. But f is
bijective, i.e. the pre-image of a singleton has to be a singleton. This
contradiction shows that Tt � Ta and likewise Tt � Tb. Assume there
would be a homeomorphism f : Ta → Td. Then f−1({b}) and f−1({a})
must both be singletons, and different, which is impossible. Hence
Ta � Td and likewise Tb � Td. For the same reason we get Tt � Td.

Consider Ta. Each sequence in (X,Ta) converges against b because in
every neighborhood of b, which is only X = {a, b} are all sequence
elements.

15. Explain the difference between Z2 × Z3 and Z2 n Z3 . Is there also a
group Z2 o Z3 ?

Solution: All these expressions have G = {Z2,Z3} as common under-
lying set. It has six elements. Z2 × Z3 is the direct product with the
multiplication

(b, c) · (b′, c′) = (b · b, c · c′)

Z2 nZ3 indicates that Z3 E G is a normal in the resulting group. It is
called semi-direct product and has the multiplication

(b, c) · (b′, c′) = (b · b′, c · σ(b)(c′))

10
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with a homomorphism σ : Z2 −→ Aut(Z3) into the automorphism
group of the normal subgroup. It can also be written Z3 oσ Z2 to
indicate the important influence of σ. We know that there are two
groups of order 6, Z6 and S3. The first is abelian, as is the product
Z2×Z3. Since (1, 2) generates (Z2×Z3,+), it is a cyclic group and we
get

Z2 × Z3
∼= Z6 .

S3 is not abelian and has subgroupsA3 = {(1), (123), (132)} and {(1), (12)},
{(1), (13)}, {(1), (23)} with three, two elements, resp.
Since (123)(12)(132) = (23) the latter three groups are not normal in
S3. On the other hand (12)(123)(12) = (132) so A3 E S3 is a normal
subgroup. It also shows that σ : Z2 −→ Inn(Z3) E Aut(S3) defined by
the conjugation with (12), i.e. σ((1)) = (1) and σ((12)) = ι(12) defines
the required homomorphism, where ι(12) is the inner automorphism
conjugation with (12), and we get

G ∼= A3 oσ {(1), (12)} ∼= Z3 o Z2

Assume Z2 oσ Z3 would be a group with non-trivial homomorphism
σ : Z3 → Aut(Z2). However, Aut(Z2) = {1} because α(1) = 1 which
also fixes the second element by the requirement that all α ∈ Aut(Z2)
are bijective. Hence σ(Z3) = 1 and σ would be trivial, i.e. the product
a direct one. Thus the notation Z2 oσ Z3 makes no sense.

16. Show that 16 and 33 are Størmer numbers, but no number 2n2 > 2 can
be one, e.g. 32.

Solution: A Størmer number is a number for which there is a prime
p such that p > 2n and p | (n2 + 1).

p = 257 = 162 + 1 is a prime number and p > 2 · 16 = 32.
1090 = 332 + 1 = 2 · 5 · 109 and p = 109 > 2 · 33 = 66.
1025 = 322 + 1 = 52 · 41 but p = 41 < 2 · 25 = 50.
In general if for n > 1

p | (2n2)2 + 1 = 4n4 + 1 = (2n2 − 2n+ 1)(2n2 + 2n+ 1)

then p | (2n2 ± 2n+ 1) < 2 · 2n2 = 4n2.

Størmer numbers n are exactly those numbers for which there isn’t a
linear combination

arccotn =
n−1∑
k=1

ak · arccot k , ak ∈ Z

11
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Størmer numbers are therefore also called arc-cotangent irreducible
numbers.

17. Consider a number n which is not a prime and

p |n =⇒ p |
(
n

p
− 1

)
E.g. 30 = 2 · 3 · 5 is such a number, since 2 | 14 , 3 | 9 , 5 | 5.

Show that n is square-free (all prime factors have exponent 1), and no
semiprime (product of exactly two primes).

Solution: Numbers with those properties are called Giuga numbers.
Giuga conjectured 1950 that a natural number is prime, if and only if

n−1∑
k=1

kn−1 ≡ −1 mod n.

The equation follows from Fermat’s little theorem if n is prime:

kp−1 ≡ 1 mod p =⇒
n−1∑
k=1

kn−1 ≡ (p− 1) · 1 = p− 1 ≡ −1 mod p

It is not clear whether the other direction holds, i.e. whether there are
composite numbers with this property. It is only known that such a
number has at least 10,000 decimal digits. A Carmichael number n
is a composite, square-free number with the additional property

an−1 ≡ 1 mod n for all coprime a , (a, n) = 1.

Korselt had shown 1899 that a number n is a Carmichael number, if
it is not prime, square-free, and for all its prime divisors p |n holds
(p− 1) | (n− 1). This result can be tightened to

p |n =⇒ (p− 1) |
(
n

p
− 1

)
because n − 1 = (n/p) − 1 + (p − 1)(n/p), i.e. n − 1 ≡ (n/p) − 1
mod (p−1). This shows, that Carmichael numbers and Giuga numbers
are closely related. Giuga’s conjecture is indeed equivalent to:

No natural number is simultaneously Giuga and Carmichael number.

12
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Another interesting theorem is, that n is a Giuga number, if and only
if it is a composite, square-free number and∑

p|n

1

p
−
∏
p|n

1

p
∈ N.

This term equals 1 for all known Giuga numbers:

30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838,

14737133470010574, 550843391309130318,

244197000982499715087866346,

554079914617070801288578559178,

1910667181420507984555759916338506

Proof of the initial statements:

Let n be a Giuga number. Assume p2 |n. Then p | (n/p) and p - (n/p)−
1 in contradiction to the defining condition.

Next assume n = p · q is a product of two primes with p < q. Then
(n/q)−1 = p−1 < p < q. Hence q - ((n/q)−1), again a contradiction
to the defining condition.

18. Prove that path integrals in Rn over gradient vector fields depend only
on starting and endpoint, and not on the path itself.

Solution: Let f : R −→ R a gradient vector field, i.e. there is a
differentiable function V : Rn −→ R with

(gradV )τ = f.

Let γ : [a, b] −→ Rn be a smooth curve with f(a) = x0, f(b) = x1.
Then∫

γ

〈f, ds〉 =

∫ b

a

〈f(γ(t)), γ′(t)〉 dt =

∫ b

a

〈gradV (γ(t))τ , γ′(t)〉 dt

=

∫ b

a

gradV (γ(t)) · γ′(t) dt =

∫ b

a

[
d

dt
V (γ(t))

]
dt

Now V ◦ γ : [a, b] −→ R is a one-dimensional differentiable function.
Thus we can apply the fundamental theorem of calculus and get∫

γ

〈f, ds〉 = V (γ(b))− V (γ(a)) = V (x1)− V (x0)

which is independent of γ.

13
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19. Let P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for all n ∈ N, n ≥ 2. Determine
a closed form for Pn.

Solution: All sequence elements are greater or equal zero, and the se-
quence is strictly monotone increasing: 0 < Pn−1 < 2Pn−1 +Pn−2 = Pn
for n > 1. Therefore 2 ≤ Pn/Pn−1 = 2+Pn−2/Pn−1 < 3 for n > 1. Since
(Pn/Pn−1)n>1 is bounded from below and from above, it has at least
one convergent subsequence by the theorem of Bolzano-Weierstraß.

If (Pn/Pn−1)n>1 converges, say against L, then

L := lim
n→∞

Pn
Pn−1

= 2 + lim
n→∞

Pn−2

Pn−1

= 2 +
1

L

hence L2−2L−1 = 0 and L = 1±
√

2. As each element of the sequence
is greater than 2, we have L = 1 +

√
2.

If we only consider the recursion without initial conditions, then we
have two possible limits and the two sequences

A0 = a ∧ An := a(1 +
√

2)n

B0 = b ∧ Bn := b(1−
√

2)n

are solutions to Pn = 2Pn−1 + Pn−2 and therewith all linear comnina-
tions a(1 +

√
2)n + b(1−

√
2)n. With P0 = 0, P1 = 1 we get

P0 = a+ b

P1 = a(1 +
√

2) + b(1−
√

2)[
a
b

]
=

[
1 1

1 +
√

2 1−
√

2

]−1 [
0
1

]
= − 1

2
√

2

[
−1
1

]
=

[
1/2
√

2

−1/2
√

2

]
so with our given initial conditions we have

Pn =

(
1 +
√

2
)n − (1−√2

)n
2
√

2
.

It is easy to check that Pn fulfills the recursion. It is called Pell sequence
and 1 +

√
2 the silver ratio. Finally, we have to prove that Pn/Pn−1

14
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actually converges.

Pn
Pn−1

=

(
1 +
√

2
)n − (1−√2

)n(
1 +
√

2
)n−1 −

(
1−
√

2
)n−1

=

1−

(
1−
√

2

1 +
√

2

)n

1

1 +
√

2
−

(
(1−

√
2)n−1

(1 +
√

2)n

) n→∞−→ 1− 0
1

1 +
√

2
− 0

= 1 +
√

2

20. Find the irreducible minimal polynomial for

Q ⊆ Q

 3

√
9 +
√

69

18
+

3

√
9−
√

69

18

 .

Solution: Set a :=
3

√
9 +
√

69

18
and b :=

3

√
9−
√

69

18
. Then

a2b =
3

√
(9 +

√
69)2 · (9−

√
69)

183
=

3

√
12(9 +

√
69)

183

ab2 =
3

√
12(9−

√
69)

183

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

= 1 +
3
√

108 + 12
√

69

6
+

3
√

108− 12
√

69

6

= 1 +
3
√

12

6

(
3

√
9 +
√

69 +
3

√
9−
√

69

)
= 1 +

3

√
1

18

(
3

√
9 +
√

69 +
3

√
9−
√

69

)
= 1 + a+ b

and the minimal polynomial is therefore x3 − x− 1 ∈ Q[x].

ψ :=
3

√
9 +
√

69

18
+

3

√
9−
√

69

18
is called plastic number. The desig-

nation plastic number is misleading and does not correspond to van
der Laan’s intention, because not the material plastic, but the spatial

15
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extent (in architecture) was decisive for the name ”plastic”. The other
two solutions of x3 − x− 1 = 0 are

−ψ
2
± i

√
3− ψ

4ψ

which can be proven by long division and Vieta’s formula. ψ is the
limit of the Padovan sequence, which is defined by

Pn := Pn−2 + Pn−3 , P0 = P1 = P2 = 1

One can prove that

ψ =
3

√
1 +

3

√
1 + 3
√

1 + . . . ≈ 1.324717957244746025960908854 . . .

21. Show that the embedding S1 −→ R2 − {0} is a homotopy equivalence,
and that R −→ R2 − {0} defined by x 7→ (x, 1) is none.

Solution: The homotopy inverse to S1 ⊆ι R2 − {0} is

r : R2 − {0} −→ S1 , x 7−→ x

‖x‖

so r ◦ ι = idS1 and ι ◦ r is homotope to the identity by

H(x, t) := (1− t) x

‖x‖
+ tx .

A homotopy equivalence induces an isomorphism of the fundamental
groups. Now π1(R2 − {0}) = π1(S1) = Z while π1(R) = {1}, so R and
R2 − {0} cannot be homotopy equivalent.

22. Let ∅ 6= X be a set, P(X) its power set. Consider the following map-
pings

f : X −→ P(X)

x 7−→ {x}

g : P(X)× P(X) −→ P(X)

(A,B) 7−→ A ∪B

and decide whether they are injective, surjective, and calculate the fiber
(pre-image) of the empty set.

16
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Solution: f is injective because f(x) = {x} = {y} = f(y) implies
x = y. f is not surjective since ∅ 6∈ f(X). In particular f−1(∅) = ∅.

Let x ∈ X. Then

g(({x}, ∅)) = {x} ∪ ∅ = {x} = ∅ ∪ {x} = g((∅, {x}))

which shows that g is not injective. However, g is surjective since
g((A, ∅)) = A ∪ ∅ = A for any A ⊆ X. The fiber of the empty set is
g−1(∅) = {(∅, ∅)}.

23. Find the smallest positive integer x that solves

x ≡ 2 mod 3

x ≡ 3 mod 4

x ≡ 2 mod 5

Solution: There is a solution x since 3, 4, 5 are pairwise coprime by
the Chinese remainder theorem, and all solutions are congruent modulo
M = 3 · 4 · 5 = 60. The calculation is

7 · 3 + (−1) · M
3

= 1 =⇒ α1 = −20

4 · 4 + (−1) · M
4

= 1 =⇒ α2 = −15

5 · 5 + (−2) · M
5

= 1 =⇒ α3 = −24

which results in

x = 2 · α1 + 3 · α2 + 2 · α3 = −133 ≡ 47 mod M.

24. Let ~u,~v, ~w be three different coplanar vectors of equal length, originat-
ing at a point O. Their endpoints define a triangle 4UVW . How can
the barycenter S be found?

Solution: Let H be the point in which the heights intersect. O = C
is the circumcenter C per construction. Hence ~OH = ~u + ~v + ~w by
Sylvester’s triangle theorem. On the other hand are O and H on the
Euler straight of the triangle, and the Euler identity says 3~S = ~H+2~C.
Thus 3 ~OS = ~OH + 2 ~OC = ~OH = ~u+ ~v + ~w or ~OS = 1

3
(~u+ ~v + ~w).

25. Is a partially differentiable function f : R2 → R at some point x0 also
continuous at x0?

17
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Solution: The answer is no because partial differentials are only the
directional differentials in coordinate direction. There is no information
about any other direction.

Consider x0 = (0, 0) and f : R2 −→ R defined as

f(x, y) :=

{
0, if x = 0 or y = 0

1, otherwise

Then

lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0 =⇒ ∂xf(0, 0) = 0

and the same is obviously true for the symmetric case ∂yf(0, 0) = 0.
Thus f is partially differentiable at x0 but not continuous, e.g.

lim
n→∞

f

(
1

n
,

1

n

)
= lim

n→∞
1 6= 0 = f(0, 0) = f(x0) .

26. Let g be the real Lie algebra generated by

A1 =

0 0 0
0 1 0
0 0 −1

 , A2 =

 0 0 1
−1 0 0
0 0 0

 , A3 =

 0 1 0
0 0 0
−1 0 0


Calculate its center Z(g) = {X | [Ai, X] = 0 (i = 1, 2, 3)}, its commuta-
tor subalgebra [g, g], and a Cartan subalgebra h.

Solution: We observe that

g =

{
X =

3∑
i=1

xiAi

∣∣∣∣∣ β(X.v, w) + β(v,X.w) = 0 for all v, w ∈ R3

}

with respect to the bilinear form

1 0 0
0 0 1
0 1 0

 , i.e. g ∼= so(3). Therefore g

is simple, which implies that Z(g) = {0}, and [g, g] = g. Since dim g = 3
we have dim h = 1, which is Abelian and thus nilpotent. We claim
that h = R · A1. It remains to show that h is self-normalizing. Say∑3

i=1 xiAi ∈ Ng(A1), i.e.

h 3 [X,A1] = x2[A2, A1] + x3[A3, A1]

= x2[e13 − e21, e22 − e33] + x3[e12 − e31, e22 − e33]

= x2e21 − x2e13 + x3e12 − x3e31

= −x2A2 + x3A3 ∈ h = R · A1

18
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where eij are the matrices with 1 at position (i, j) and 0 elsewhere. It
follows x2 = x3 = 0 and X ∈ h, hence h is self-normalizing.

27. Let f : [a, b] −→ R be a continuous function and g : [a, b] −→ R
integrable with g(x) ≥ 0 for all x ∈ [a, b]. Then there is a ξ ∈ [a, b]
such that ∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx

Solution: f assumes its minimum m and its maximum M on [a, b]
since f is continuous. Thus mg(x) ≤ f(x)g(x) ≤ Mg(x) and by
monotony and linearity of the Riemann integral

m

∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) dx ≤M

∫ b

a

g(x) dx .

If
∫ b
a
g(x) dx 6= 0 then we have fo find ξ ∈ [a, b] such that

f(ξ) =
1∫ b

a
g(x) dx

∫ b

a

f(x)g(x) dx

With g(x) ≥ 0 we have
∫ b
a
g(x) dx > 0 and

m = f(x0) ≤ 1∫ b
a
g(x) dx

∫ b

a

f(x)g(x) dx ≤ f(x1) = M

and the intermediate value theorem for continuous functions applies,
i.e. there is a ξ ∈ [x0, x1] ⊆ [a, b] with the required property.

If
∫ b
a
g(x) dx = 0, then

0 = m

∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) dx ≤M

∫ b

a

g(x) dx = 0

and each element of ξ ∈ [a, b] satisfies

0 =

∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx

28. Consider the circle segment above A = (−1, 0) and B = (1, 0) of

x2 +

(
y +

1√
3

)2

=
4

3
.

19
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The point P :=

(
1√
3
, 1− 1√

3

)
lies on this segment. Calculate the

height h of the circle segment, and |AP |+ |PB|.

Solution: Set C := (0,−
√

3). Then 4ABC is an equilateral triangle
with side length 2. By van Schooten’s theorem (a corollary of Ptolemy’s
theorem for concyclic quadrilaterals) we get |AP | + |PB| = |PC|. On
the other hand

|PC| = | ~PC| = | ~PO + ~OC| = | ~OC − ~OP |

=

∥∥∥∥( 0

−
√

3

)
−
[

1/
√

3

1− (1/
√

3)

]∥∥∥∥
=

√
1

3
+

(
− 3√

3
− 1 +

1√
3

)2

=

√
8 + 4

√
3

3
≈ 2.231

The height of the segment is the diameter of the circumscribed circle
minus the height of equilateral 4ABC, or the y−coordinate of the
circle at x = 0, i.e.

h =
4√
3
−
√

3 =
1√
3
.

29. Let ϕ : V −→ V a linear mapping. Prove

ker(ϕ) ∩ im(ϕ) = {0} ⇐⇒ ker(ϕ ◦ ϕ) = ker(ϕ)

Solution: ker(ϕ) ⊆ ker(ϕ ◦ ϕ) is always true since ϕ(0) = 0. Let
v ∈ ker(ϕ ◦ϕ), so ϕ(v) ∈ im(ϕ)∩ ker . Hence if that intersection equals
{0}, then ker(ϕ ◦ ϕ) ⊆ ker(ϕ).

Now assume ker(ϕ ◦ ϕ) = ker(ϕ) and v ∈ im(ϕ) ∩ ker(ϕ) = {0}. Then
there is a w ∈ V such that ϕ(w) = v and ϕ(v) = 0 and (ϕ ◦ϕ)(w) = 0.
This means that w ∈ ker(ϕ) by assumption, i.e. v = ϕ(w) = 0, so
im(ϕ) ∩ ker(ϕ) = {0}.

30. Let A by a cylindric surface (without base or cover) that rotates around
the z-axis and stands on the plane {z = 0}, with radius R > 0 and
height h > 0. Give a parameterization and calculate the surface integral∫

A

〈F, n〉 d2r
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for the vector field F : R3 → R3 defined by F (x, y, z) = (xz, yz, 123).

Solution: One possible parameterization is

φ : [0, 2π)× [0, h] −→ A

(ϕ, z) 7−→ (R cosϕ,R sinϕ, z)

The height of the cylinder is given by z, and for a fixed z we have a
circle parallel to the plane z = 0 described by polar coordinates. φ is a
bijection because every point on A has exactly one pair of parameters
(φ, z).

We use this parameterization φ to calculate the surface integral.∫
A

〈F, n〉 d2r =

∫ 2π

0

∫ h

0

〈F ◦ φ, n〉 ‖∂ϕφ× ∂zφ‖ dz dϕ

=

∫ 2π

0

∫ h

0

〈F ◦ φ, ∂ϕφ× ∂zφ〉 dz dϕ

=

∫ 2π

0

∫ h

0

〈

zR cosϕ
zR sinϕ

123

 ,

R cosϕ
R sinϕ

0

〉 dz dϕ
=

∫ 2π

0

∫ h

0

zR2
(
cos2 ϕ+ sin2 ϕ

)
dz dϕ

=

∫ 2π

0

∫ h

0

zR2 dz dϕ = 2πR2

[
z2

2

]z=h
z=0

= h2πR2

We could alternatively use Gauß’s divergence theorem. This uses closed
surfaces, so we have to consider base and cover. Let C be the volume
of the cylinder, D1 its base, and D2 its cover. Then ∂Z = A∪D1∪D2.
Note that the two integrals over D1 and D2 cancel each other since the
normal vectors n are parallel to the z-axis, but pointing into opposite
directions, and the third component of F is constant.∫
D1

〈F, n〉 d2r +

∫
D2

〈F, n〉 d2r =

∫
D1

〈F,

0
0
1

〉 d2r +

∫
D2

〈F,

 0
0
−1

〉 d2r

=

∫
D1

123 d2r +

∫
D2

−123 d2r

= 123(πR2 − πR2) = 0

Therefore∫
∂Z

〈F, n〉 d2r =

∫
A

〈F, n〉 d2r+

∫
D1

〈F, n〉 d2r+

∫
D2

〈F, n〉 d2r =

∫
A

〈F, n〉 d2r
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Now we apply Gauß’s divergence theorem∫
∂Z

〈F, n〉 d2r =

∫
Z

divF d3r

=

∫ R

0

∫ 2π

0

∫ h

0

(divF ) ◦ φ · | det Jφ| dz dϕ dρ

=

∫ R

0

∫ 2π

0

∫ h

0

2zρ dz dϕ dρ

= 2 · R
2

2
· h

2

2
· 2π = h2πR2

31. Let P be a finite set of points in a plane, that are not all collinear.
Then there is a straight, that contains exactly two points.

Solution: We consider the pairs (g, P ) of a straight g through two
points of P and a point P ∈ P − {g}. Those points exist since not all
points are collinear. The number of such pairs is finite because P is.
Hence there is a pair (g, P ), such that distance dist(g, P ) is minimal.
It remains to show that g doesn’t contain a third point from P .

https://commons.wikimedia.org/wiki/File:Tibor_gallai_proof.svg

Assume there are three such points. Let F be the basis point of the
(minimal) perpendicular from P on g. Now there have to be two points

22
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A,B ∈ P which lie on the same side of F by the pigeonhole principle.
Say B is closer to F than P. Thus the distance dist(AP,B) of B to the
straight through A and P is smaller than the distance dist(g, P ), which
is as height in the right triangle4(APF ) smaller than the cathetus PF .

However, this contradicts the choice of the pair (g, P ) as minimal dis-
tance dist(g, P ), and our assumption that P∩{g} contains three points.
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2 November 2021

1. (a) Let C ⊆ Rn be compact and f : C −→ Rn continuous and injec-
tive. Show that the inverse g = f−1 : f(C) −→ Rn is continuous.

(b) Let S := {x + tv | t ∈ (0, 1)} with x, v ∈ Rn, and f ∈ C0(Rn)
differentiable for all y ∈ S. Show that there is a z ∈ S such that

f(x+ v)− f(x) = ∇f(z) · v .

(c) Let γ : [0, π] −→ R3 be given as

γ(t) :=

cos(t) sin(t)
sin2(t)
cos(t)

 , t ∈ [0, π].

Show that the length L(γ) > π.

Reason: Calculus.

Solution:

(a) Let (yk)k∈N ⊆ f(C) a sequence such that limk→∞ yk = y ∈ f(C).
There is a unique sequence (xk)k∈N ⊆ C and x ∈ C such that

f(xk) = yk (k ∈ N) ∧ f(x) = y

since f is injective. Assume g is not continuous. Then there is a
ε > 0 and a subsequence (ykm)m∈N ⊆ (yk)k∈N with

|xkm − x| = |g(ykm)− g(y)| ≥ ε for all m ∈ N (∗).

Because C is compact, there is another convergent subsequence
(xkj)j∈N ⊆ (xk)k∈N with limj→∞ xkj = x̃. By continuity of f follows

y = lim
j→∞

ykj = lim
j→∞

f(xkj) = f(x̃),

hence f(x) = f(x̃) and so x = x̃. In particular limj→∞ xkj = x
contradicting (∗).

(b) Define g : [0, 1] −→ R by

g(t) := f(x+ tv) , t ∈ [0, 1]

Then g is continuous on [0, 1] and by assumption differentiable on
(0, 1). Moreover g(0) = f(x) and g(1) = f(x+v). We get with the
chain rule

g′(t) = ∇f(x+ tv) · v for all t ∈ (0, 1)
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and with the mean value theorem a τ ∈ (0, 1) such that

g′(τ) =
g(1)− g(0)

1− 0
= ∇f(x+ τv) · v = f(x)− f(x+ v)

which had to be shown if we set z := x+ τv.

(c)

|γ′(t)| =

∣∣∣∣∣∣
− sin2(t) + cos2(t)

2 sin(t) cos(t)
− sin(t)

∣∣∣∣∣∣
=
√

(cos2(t)− sin2(t))2 + 4 sin2(t) cos2(t) + sin2(t)

=
√

cos4(t) + 2 sin2(t) cos2(t) + sin4(t) + sin2(t)

=
√

(cos2(t) + sin2(t))2 + sin2(t) =
√

1 + sin2(t) ≥ 1

and in particular |γ′(t)| > 1 for t ∈ (0, π). Hence

L(γ) =

∫ π

0

|γ′(t)| dt >
∫ π

0

dt = π .

2. Let g, h be two skew lines in a three-dimensional projective space
P = P(V ), and P a point that is neither on g nor on h. Prove that
there is exactly one straight through P that intersects g and h.

Reason: Projective Geometry.

Solution: The plane {P, g} has to intersect h in a point Q for dimen-
sional reasons. The straight {P,Q} contains P, and intersects g and h
because g and {P,Q} are contained in a projective plane. This proves
existence.

Assume there were two transverse straights h1, h2 through P which
both intersect g and h. Then g ∩ h1 6= g ∩ h2 and h∩ h1 6= h∩ h2 since
h1 6= h2. This means that the plane {h1, h2} contains both lines g, h.
However, this implies that g and h intersect, as we are in a projective
space, contradicting the assumption that g, h are skew lines.

3. Let (A, e) be a unital C∗-algebra. A self-adjoint element a ∈ A is called
positive, if its spectral values are:

σ(a) := {λ ∈ C | a− λe is not invertible } ⊆ R+ := [0,∞).
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The set of all positive elements is written A+ . A linear functional
f : A −→ C is called positive, if f(a) ∈ R+ for all positive a ∈ A+ .

Prove that a positive functional is continuous.

Reason: C∗-algebras.

Solution: Firstly, we want to show that f is bounded on

M := {a ∈ A+ | 0 ≤ a ≤ e}.

If this wasn’t the case, then there would be a sequence (xn)n∈N ⊆ M
such that limn→∞ f(xn) =∞. Let (an)n∈N ⊆ R+ be any sequence of l1

and set x :=
∑∞

n=1 anxn. Note that the series converges absolutely.

m∑
n=1

anxn ≤ x =⇒ f

(
m∑
n=1

anxn

)
=

m∑
n=1

anf(xn) ≤ f(x)

Since f(xn) ≥ 0,
∑∞

n=1 anf(xn) converges for any (an)n∈N ∈ l1.

We can find a subsequence (f(xnk))k∈N ⊆ (f(xn))n∈N such that f(xnk) ≥
2nk because f(xn)

n→∞−→ ∞. Define a ∈ l1 by ank = 2−nk and an = 0
otherwise. Then

∑∞
k=1 ankf(xnk) diverges, a contradiction. There is

therefore a constant C > 0 such that f(x) ≤ C for all x ∈M.

Let x be an arbitrary self-adjoint element with ‖x‖ ≤ 1. Then x =
x+ − x− with positive elements x+, x− ∈ A+ . From x± ≤ |x| ≤ e
follows x± ∈ M and so |f(x)| ≤ |f(x+)| + |f(x−)| ≤ 2C (Gelfand-
Neumark).

If finally x ∈ A is arbitrary with ‖x‖ ≤ 1, then
∥∥1

2
(x± x∗)

∥∥ ≤ 1 and

|f(x)| ≤
∣∣∣∣f (1

2
(x+ x∗)

)∣∣∣∣+

∣∣∣∣f (1

2
(x− x∗)

)∣∣∣∣ ≤ 4C

hence f is bounded with ‖f‖ ≤ 4C and therewith continuous.

4. Prove that the following groups F1, F2 are free groups:

(a) Consider the functions α, β on C ∪ {∞} defined by the rules

α(x) = x+ 2 and β(x) =
x

2x+ 1
.

The symbol ∞ is subject to such formal rules as 1/0 = ∞ and
∞/∞ = 1. Then α, β are bijections with inverses

α−1(x) = x− 2 and β−1(x) =
x

1− 2x
.

Thus α and β generate a group of permutations F1 of C ∪ {∞}.
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(b) Define the group F2 := 〈A,B〉 with

A :=

[
1 2
0 1

]
and B :=

[
1 0
2 1

]
Reason: Group Theory.

Solution: Let G be a group and X ⊆ G a subset of G. Assume
that each element g ∈ G can be uniquely written in the form g =
xm1

1 xm2
2 · · ·xmss where xi ∈ X, s ≥ 0,mi 6= 0, and xi 6= xi+1. Let F be

the free group on X and σ : X → F the associated injection. By the
mapping property of free groups, there is a homomorphism ψ : F → G
such that ψ ◦ σ : X → G is the inclusion map. Since G = 〈X〉, we
see that ψ is surjective. It is injective by the uniqueness of the normal
form. Thus G ∼= F is free over X.

(a) Observe that a nonzero power of α maps the interior of the unit
circle |z| = 1 to the exterior and a nonzero power of β maps the
exterior of the unit circle to the interior with 0 removed: the
second statement is most easily understood from the equation
β(1/x) = 1/(x+ 2). From this it is easy to see that no nontrivial
reduced word in {α, β} can equal 1. Hence every element of F1 has
a unique expression as a reduced word. It follows from the above
that F1 is free on {α, β}.

(b) Consider the linear fractional transformations (ad− bc 6= 0)

λ(a, b, c, d) : C ∪ {∞} −→ C ∪ {∞}

x 7−→ ax+ b

cx+ d

Now [
a b
c d

]
ϕ7−→ λ(a, b, c, d)

is a homomorphism from GL(2,C) to the group of all linear frac-
tional transformations of C ∪ {∞} in which A maps to α and B
maps to β. Since no nontrivial reduced word in {α, β} can equal
1, the same is true of reduced words in {A,B}. Consequently the
group F2 is free on {A,B}.

5. We model the move of a chess piece on a chessboard as timely homoge-
neous Markov chain with the 64 squares as state space and the position
of the piece at a certain (discrete) point in time as state. The tran-
sition matrix is given by the assumption, that the next possible state
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is equally probable. Determine whether these Markov chains M(piece)
are irreducible and aperiodic for (a) king, (b) bishop, (c) pawn, and
(d) knight.

Reason: Markov Processes.

Solution: The king can reach every position on the board from any
position, i.e. M(king) is irreducible. For any square we have

d(sk) = gcd{n ≥ 1 | (P n)k,k > 0} = 1

i.e. that each state has the period 1 because the king can always get
back to its starting position within 2 or 3 moves, so the greatest com-
mon divisor of all possible periods is 1. Hence M(king) is aperiodic.

M(bishop) is reducible, since we cannot reach all squares from a given
starting position. With the same argument as above, we see that
M(bishop) is aperiodic.

M(pawn) is reducible, since we cannot reach all squares from a given
starting position, and periodic with d(sk) = ∞ for all k, because a
pawn can never return to its starting position.

The knight can always reach all squares from any starting point, so
M(knight) is irreducible. For any square we have

d(sk) = gcd{n ≥ 1 | (P n)k,k > 0} = 2

for the greatest common divisor of all periods with positive probability
to return to the starting point. So M(knight) is periodic with period 2.
The knight can always return in two moves. Since it changes the color
of the square with every move, a returning path must always be of an
even number of moves.

Summary:

piece king bishop pawn knight
irreducibility 1 0 0 1

period 1 1 ∞ 2

6. Prove that a n-dimensional manifold X is orientable if and only if

(a) there is an atlas for which all chart changes respect orientation,
i.e. have a positive functional determinant.

(b) there is a continuous n-form which nowhere vanishes on M.
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Reason: Manifolds.

Solution: Orientations of a vector space are elements from either of
the two possible equivalence classes of ordered bases, i.e. detT ≷ 0
where T is the transformation matrix between bases.

An orientation µ of M is a choice of orientations µx for every tangent
space Tx(M), such that for all x0 ∈ M there is an open neighborhood
x0 ∈ U ⊆M and differentiable vector fields ξ1, . . . , ξn on U with

[(ξ1)x , . . . , (ξn)x] = µx

for all x ∈ U. The manifold M is called orientable, if an orientation for
M can be chosen.

Let µ be an orientation onM. A chart (U,ϕ) with coordinates x1, . . . , xn
is called positive oriented, if for all x ∈ U[

∂

∂x1

∣∣∣∣
x

, . . . ,
∂

∂xn

∣∣∣∣
x

]
= µx

(a) If there is an orientation of X, we can find an atlas, that only
contains positive oriented charts. Then all charts (U,ϕ) with x ∈
U induce the same orientation on Tx(M), hence they must have a
positive functional determinant.

Let conversely be (Uα, ϕα) an atlas of M, with positive functional
determinant, i.e. detD(ϕα ◦ ϕ−1

β ) > 0 on ϕβ(Uα ∩ Uβ). Then all
charts (Uα, ϕα) with x ∈ Uα of Tx(M) have the same orientation
µx . Thus µ : x 7−→ µx defines an orientation on M because
it is determined by an n-tuple of differential vector fields in a
neighborhood of x ∈M for every chart.

(b) Let ω0 be a nowhere vanishing n-form on M, and (Uι, ϕι)ι∈I an
atlas of M. Then there are nowhere vanishing continuous functions
hι on Bι := ϕι(Uι) for every ι ∈ I, such that

(ω0)ι = hιdx
1 ∧ . . . ∧ dxn.

We may assume that hι > 0 on Bι by changing the coordinate xn

to x−n if necessary. Hence

hκdx
1 ∧ . . . ∧ dxn = (ω0)κ

= det
(
D
(
ϕι ◦ ϕ−1

κ

))
(ω0)ι

= det
(
D
(
ϕι ◦ ϕ−1

κ

))
· hιdx1 ∧ . . . ∧ dxn
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Thus det (D (ϕι ◦ ϕ−1
κ )) > 0, and the atlas is oriented.

Let M conversely be oriented with an oriented atlas (Uι, ϕι). More-
over let (fι)ι∈I a partition of unity for the cover (Uι)ι∈I . Then
dx1 ∧ . . .∧ dxn induces a n-form ωι on Uι for every ι ∈ I. We have
ωι = dικ · ωκ with

dικ =
(
D
(
ϕι ◦ ϕ−1

κ

))
◦ ϕκ > 0

on Uι∩Uκ . The form fι ·ωι is a n-form on M with compact support
supp(fι · ωι) ⊆ Uι . We define ω0 :=

∑
ι∈I fι · ωι . Let x ∈ M, I0

the finite set of all ι ∈ I with x ∈ supp(fι) and κ ∈ I0. Then

(ω0)x =
∑
ι∈I0

fι(x) · (ωι)x

=

(∑
ι∈I0

fι(x)dικ(x)

)
· (ωκ)x

From fι(x) > 0 ,
∑

ι∈I0 fι(x) = 1 , and dικ > 0, we get (ω0)x 6= 0.

7. A topological vector space E over K ∈ {R,C} is normable if and only
if it is Hausdorff and possesses a bounded convex neighborhood of ~0.

Reason: Kolmogorov’s Theorem.

Solution: If E is normable, and if x 7→ ‖x‖ is a norm on E that
generates te topology, then U := {x : ‖x‖ ≤ 1} is a bounded and
convex neighborhood of ~0. As a metrizable space, E is also Hausdorff.

Conversely, suppose E is a topological vector space, Hausdorff, and
possessing a bounded convex neighborhood ~0 ∈ U. Let V ⊆ U be a
balanced neighborhood of ~0, i.e. λV ⊆ V ⊆ U for all |λ| ≤ 1. Then
for the convex hulls holds conv(V ) ⊆ conv(U) = U, where conv(V ) is a
balanced convex neighborhood of ~0. As any subset of a bounded set is
bounded, we may assume (possibly by replacing U with conv(V )) that
U is a bounded, convex, balanced neighborhood of ~0. For x 6= ~0, we
define

A(x) := {λ ∈ K : x 6∈ λU} 3 0 , A(~0) := {0}.
If x ∈ E − {~0}, we assert that A(x) contains nonzero scalars. Indeed,
if ~0 ∈ V is a neighborhood, x 6∈ V, and α ∈ K−{0} such that U ⊆ αV
(U is bounded), then α−1U ⊆ V, i.e. x 6∈ α−1U , hence α−1 ∈ A(x).

We define now x 7−→ ‖x‖ for all x ∈ E by the formula

‖x‖ := sup{|λ| : λ ∈ A(x)}.

30



https://www.physicsforums.com/ 07/21-12/21

Clearly ‖~0‖ = 0, ‖x‖ > 0 whenever x 6= ~0, and A(µx) = µA(x), i.e.
‖µx‖ = |µ| ·‖x‖. To show that x 7−→ ‖x‖ is a norm, it remains to verify
that ‖x‖ <∞ and that the triangle inequality holds.

We first show that

{λ : |λ| < ‖x‖} ⊆ A(x) (∗)

If x = ~0 then the left side of (∗) is empty. Assume x 6= ~0, and suppose
|λ| < ‖x‖. Since 0 ∈ A(x) we can suppose 0 < |λ| < ‖x‖. Then, by
definition of ‖x‖, there exists a µ ∈ A(x) such that 0 < |λ| < |µ| ≤ ‖x‖.
So x 6∈ µU, and since U is balanced, λU ⊆ µU, i.e. x 6∈ λU or λ ∈ A(x),
which proves (∗).

Let x ∈ E. We claim that ‖x‖ <∞. As λ 7→ λx is continuous at λ = 0,
and since 0 · x = ~0, there exists an ε > 0 such that λx ∈ U whenever
|λ| ≤ ε, i.e. U is absorbent. Thus 1 6∈ A(λx) and by (∗) we have
1 ≥ ‖λx‖ = |λ| · ‖x‖, which implies ‖x‖ <∞.

Let x, y ∈ E. We claim that ‖x+y‖ ≤ ‖x‖+‖y‖. We may assume that
x, y, x+ y 6= ~0. Given any ε > 0, it will suffice to show that

‖x+ y‖ ≤ ‖x‖+ ‖y‖+ 2ε.

Let α := ‖x‖ + ε > ‖x‖ and β := ‖y‖ + ε > ‖y‖. This means that
α 6∈ A(x) and β 6∈ A(y) by the definition of ‖x‖, i.e. x ∈ αU and
y ∈ βU. As U is convex, it follows that

x+ y ∈ αU + βU = (α + β)U,

and thus α + β 6∈ A(x+ y), and with (∗) that

α + β = ‖x‖+ ‖y‖+ 2ε ≥ ‖x+ y‖

and the triangle inequality holds.

Summarizing, x 7−→ ‖x‖ is a norm on E. It remains to show that
this norm topology coincides with the given topology. Since both are
compatible with the additive group structure, it is sufficient to verify
that their neighborhood system at ~0 coincide.

Suppose V is any neighborhood of ~0 for the given topology. Choose a
nonzero scalar λ such that U ⊆ λV. If ‖x‖ < |λ|−1 then λ−1 6∈ A(x) by
the definition of ‖x‖, i.e. x ∈ λ−1U ⊆ V. Thus

{x : ‖x‖ < λ−1} ⊆ V
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which shows that V is a neighborhood of ~0 for the norm topology.

Conversely, let V be any neighborhood of ~0 for the norm topology.
Choose ε > 0 so that {x : ‖x‖ ≤ ε} ⊆ V. If x ∈ εU, then ε 6∈ A(x),
therefore ‖x‖ ≤ ε by (∗), hence εU ⊆ V. Since εU is a neighborhood of
~0 for the given topology, so is V.

8. (a) Determine the minimal polynomial of π + e · i over the reals.

(b) Show that F := F7[T ]/(T 3−2) is a field, and calculate the number
of its elements, (T 2 + 2T + 4)(2T 2 + 5), and (T + 1)−1.

(c) Consider P (X) := X7129 + 105X103 + 15X + 45 ∈ F[X] and deter-
mine whether it is irreducible in case

F ∈ {Q,R,F2,Q[T ]/(T 7129 + 105T 103 + 15T + 45)}

(d) Determine the matrix of the Frobenius endomorphism in F25 for
a suitable basis.

Reason: Galois Theory.

Solution:

(a) (π+e · i)(π−e · i) = π2 +e2 ∈ R and (π+e · i)+(π−e · i) = 2π ∈ R
so we get by Vieta’s formulas X2 − 2πX + π2 + e2 ∈ R[X].

(b) We have
{a3 | a ∈ F7} = {0, 1, 6} 63 2

so T 3 − 2 has no roots in F7 and is thus irreducible, i.e. F is
a field. The equivalence classes of 1, T, T 2 build a basis, hence
|F| = |F7|3 = 343. Now

(T 2 + 2T + 4)(2T 2 + 5) = 2T 4 + 4T 3 + 13T 2 + 10T + 20

= 2T (T 3 − 2) + 4T + 4(T 3 − 2) + 8 + 13T 2 + 10T + 20

= 13T 2 + 14T + 28

= 6T 2

Long division yields (T 3−2) : (T +1) = T 2−T +1 remainder −3,
i.e. 0 = T 3−2 = (T 2+6T+1)(T+1)−3 or 3 = (T 2+6T+1)(T+1).
Now 3−1 = 5 so we have (T+1)−1 = 5(T 2+6T+1) = 5T 2+2T+5.

(c) We can use Eisenstein’s criterion for p = 5 because

5|105 , 5|15 , 5|45 , 25 - 45 , 5 - 1
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and conclude that P (X) is irreducible over Q.

P (X) ∈ R[X] is of odd degree and thus has a root in the real
number field by the intermediate value theorem, so it cannot be
irreducible.

The insertion homomorphism X 7→ 1 on F2[X] yields P (1) =
166 ≡ 0 mod 2 so P (X) ∈ F2[X] is reducible.

F = Q[T ]/(T 7129 + 105T 103 + 15T + 45) is a field. It t is the
equivalence class of T then P (t) = 0 per construction, and P (X) ∈
F[X] is reducible.

(d) Because of
{a2 | a ∈ F5} = {0, 1, 4} 6∈ 2

the polynomial X2 − 2 ∈ F5[X] is irreducible and

F25
∼= F5[X]/(X2 − 2)

so we may choose 1, x ⊆ F25 as basis where x is the representative
of the equivalence class of X. We have 15 = 1 and x5 = x2 ·x2 ·x =
2 · 2 · x = 4x. Hence the required matrix is[

1 0
0 4

]
9. Let V and W be finite-dimensional vector spaces over the field F and
f : V ⊗FW −→ F a linear mapping such that

∀ v ∈ V − {0} ∃w ∈ W : f(v ⊗ w) 6= 0

∀w ∈ W − {0} ∃ v ∈ V : f(v ⊗ w) 6= 0

Show that V ∼=F W.

Reason: Linear Algebra.

Solution: We get from the first condition that the mapping

V −→ HomF(W,F) = W ∗

v 7−→ (w 7−→ f(v ⊗ w))

is injective. Since dimW <∞ we have

dimF V ≤ dimFW
∗ = dimFW.

The second condition yields by the analogue argument that dimFW ≤
dimF V . Hence dimF V = dimFW and V ∼=F W.
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10. Let R := C[X, Y ]/(Y 2 −X2). Describe VR(Y 2 −X2) ⊆ R2, determine
whether Spec(R) is finite, calculate the Krull-dimension of R, and de-
termine whether R is Artinian.

Reason: Commutative Algebra.

Solution:

(a) VR(Y 2 −X2) is the set of zeros of Y 2 −X2, so

VR(Y 2 −X2) = {(x, y) ∈ R2 | y2 − x2 = 0}
= {(x, y) ∈ R2 | y = x} ∪ {(x, y) ∈ R2 | y = −x}

and we get the diagonals in a Cartesian coordinate system.

(b) Px := ([X − x], [Y − x]) ⊆ R is a prime ideal for every x ∈ C
because

R/Px ∼=ring C[X, Y ]/(X − x, Y − x) ∼=ring C

is an integral domain. Furthermore, the well-defined insertion
homomorphism R −→ C for (x, x) ∈ C2 shows that

∀x, y ∈ C : x 6= y =⇒ Px 6= Py .

Therefore, Spec(R) cannot be finite.

(c) Consider the canonical projection π : C[X, Y ] −→ R. Then

Spec(R) −→ {Q ∈ Spec(C[X, Y ]) | (Y 2 −X2) ⊆ Q}
P 7−→ π−1(P )

is bijective and compatible with inclusion of ideals. From

(Y 2 −X2) ⊆ (Y −X) ( (X, Y )

we get dimR ≥ 1. Since dimC[X, Y ] = 2, and {0} ∈ Spec(C[X, Y ])
and {0} ( (Y 2 − X2) we conversely have dimR ≤ 1, hence
dimR = 1.

(d) R is not Artinian because Artinian rings are zero-dimensional.
Alternatively, we can also name a decreasing sequence of ideals,
e.g. (Xn)n∈N, that doesn’t become stationary.

11. (HS-1) Let a 6∈ {−1, 0, 1} be a real number. Solve

(x4 + 1)(x4 + 6x2 + 1)

x2(x2 − 1)2
=

(a4 + 1)(a4 + 6a2 + 1)

a2(a2 − 1)2
.
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Reason: Equation.

Solution: A solution x is a root of the polynomial

P (x) := a2(a2 − 1)2(x4 + 1)(x4 + 6x2 + 1)

− x2(x2 − 1)2(a4 + 1)(a4 + 6a2 + 1)

= (a6 − 2a4 + a2)x8 − (a8 + 14a4 + 1)x6+

2(a8 + 7a6 + 7a2 + 1)x4 − (a8 + 14a4 + 1)x2

+ a6 − 2a4 + a2

= (x− a)(x+ a)[(a6 − 2a4 + a2)x6 − (2a6 + 13a4 + 1)x4

+ (a6 + 13a2 + 2)x2 + (−a4 + 2a2 − 1)]

= a2(x− a)(x+ a)

(
x− 1

a

)(
x+

1

a

)
·

· (a4 − 2a2 + 1)x4 − 2(a4 + 6a2 + 1)x2 + (a4 − 2a2 + 1)

So P (x) = 0 has the solutions x = ±a , ±1

a
and the solutions of

0 = x4 − 2
a4 + 6a2 + 1

a4 − 2a2 + 1
x2 + 1.

The discriminant of this quadratic equation is

(a4 + 6a2 + 1)2

(a4 − 2a2 + 1)2
− 1 = 16a2 (a2 + 1)2

(a2 − 1)4

=⇒ x2 =
a4 + 6a2 + 1

(a2 − 1)2
± 4a

a2 + 1

(a2 − 1)2
=

(a± 1)4

(a2 − 1)2

and all possible solutions are{
a,−a, 1

a
,−1

a
,
a+ 1

a− 1
,−a+ 1

a− 1
,
a− 1

a+ 1
,−a− 1

a+ 1

}
Another way is to observe

(x4 + 1)(x4 + 6x2 + 1)

x2(x2 − 1)2
=

1

2

(
x2 +

1

x2

)((
x+ 1

x− 1

)2

+

(
x− 1

x+ 1

)2
)

and note that a polynomial of degree 8 has at most 8 roots. However,
in this case we would need an argument to show that all these roots
are pairwise distinct.
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12. (HS-2) Define a sequence a1, a2, . . . , an, . . . of real numbers by

a1 = 1 , an+1 = 2an +
√

3a2
n + 1 (n ∈ N) .

Determine all sequence elements that are integers.

Reason: Sequence.

Solution:

(an+1 − an)2 = 3a2
n + 1 =⇒ a2

n+1 − 4an+1an + a2
n = 1 (n ≥ 1)

=⇒ a2
n − 4anan−1 + a2

n−1 = 1 (n ≥ 2)

=⇒ a2
n+1 − a2

n−1 − 4an(an+1 − an−1) = 0

=⇒ (an+1 − an−1) · (an+1 + an−1 − 4an) = 0

We also have an+1 > 2an > an > an−1 for all n ≥ 2 so that an+1 6= an−1,
i.e. an+1 = 4an − an−1. Since a1 = 1 and a2 = 3 are integers, this
equation implies that all subsequent an+1 are integers, too, so the entire
sequence is in Z.

13. (HS-3) For n ∈ N define

f(n) :=
n2∑
k=1

n−
[√
k − 1

]
√
k +
√
k − 1

.

Determine a closed form for f(n) without summation. The bracket
means: [x] = m ∈ Z if m ≤ x < m+ 1.

Reason: Recursion.

Solution:

f(n) =
n−1∑
m=0

(m+1)2∑
k=m2+1

n−
[√
k − 1

]
√
k +
√
k − 1

=
n−1∑
m=0

(n−m)

(m+1)2∑
k=m2+1

(√
k −
√
k − 1

)
=

n−1∑
m=0

(n−m) ·
(√

(m+ 1)2 −
√
m2
)

=
n−1∑
m=0

(n−m) =
n∑
k=1

k =
n(n+ 1)

2
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14. (HS-4) Solve over the real numbers

(1) x4 + x2 − 2x ≥ 0

(2) 2x3 + x− 1 < 0

(3) x3 − x > 0

Reason: Intervals.

Solution: All x ≥ 1 violate the second equation, and all x ≤ −1
violate the third, and

x3 − x = x(x+ 1)(x− 1) > 0

requires x 6∈ [0, 1) so we are left with x ∈ I := (−1, 0).

x4 + x2 − 2x > 0 + 0 + 0 = 0

2x3 + x− 1 < 0 + 0− 1 = −1 < 0

x3 − x = x(x− 1)(x+ 1) = (−x)(−x+ 1)(x+ 1) > 0 · 0 · 0 = 0

and all x ∈ I solve the equation system.

15. (HS-5) Let f(x) := x4−(x+1)4−(x+2)4 +(x+3)4. Determine whether
there is a smallest function value if f(x) is defined (a) for integers, and
(b) for real numbers. Which is it?

Reason: Domains.

Solution:

f(x) = x4 − (x4 + 4x3 + 6x2 + 4x+ 1)− (x4 + 8x3 + 24x2 + 32x+ 16)

+ (x4 + 12x3 + 54x2 + 108x+ 81)

= 24x2 + 72x+ 64 = 24

(
x+

3

2

)2

+ 10 ≥ 10

with f(−3/2) = 10. So f(x) assumes its minimum value 10 over the
reals. However, we have for all integers x ≥ −1 and all integers x ≤ −2

f(x) ≥ 16 with f(−1) = f(−2) = 16.

Hence f(x) assumes its minimum once over the reals and twice over
the integers with two different function values.

37



https://www.physicsforums.com/ 07/21-12/21

3 October 2021

1. Prove that F : L2([0, 1]) −→ (C([0, 1]), ‖.‖∞) defined as

F (x)(t) :=

∫ 1

0

(t2 + s2)(x(s))2 ds

is compact.

Reason: Theorem of Arzelà-Ascoli.

Solution: F (x) are continuous functions

F (x)(t) = t2
∫ 1

0

(x(s))2 ds+

∫ 1

0

s2(x(s))2 ds = a · t2 + b

with |a|, |b| ≤ ‖x‖L2([0,1]). If U ⊆ L2([0, 1]) is bounded, then F (U) ⊆
C([0, 1]) is bounded, too, and equicontinuous. Therefore F (U) is rela-
tive compact in the supremum norm by the theorem of Arzelà-Ascoli.
Hence F maps bounded sets on relative compact sets, i.e. F is a com-
pact operator.

2. A project manager has n workers to finish the project. Let xi be the
workload of the i−th person, and

x ∈ S :=

{
x ∈ Rn |

n∑
i=1

xi = 1 , xi ≥ 0

}

a possible partition of work. Let Xi be the set of partitions, which
person i agrees upon. We may assume that he automatically agrees if
xi = 0, that Xi is closed, and that there is always at least one person
which agrees to a given partition, i.e.

⋃n
i=1Xi = S.

Prove that there is one partition that all workers agree upon.

Reason: Project management lemma.

Solution: Let Fi := {x ∈ S |xi = 0} ⊆ Xi be the i−th side of the
simplex S. We have to show that

⋂n
i=1 Xi 6= ∅. Assume the contrary

and set di(x) := dist(x,Xi). The distances are continuous functions
and

∑n
i=1 di(x) > 0 per assumption. Define

f = (f1, . . . , fn) : S −→ S

fi(x) :=
di(x)∑n
i=1 di(x)
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Since
⋃n
i=1Xi = S, every x ∈ S is part of a set Xi, i.e. fi(x) = 0 for

some i ∈ {1, . . . , n}. f maps thus onto the boundary δS =
⋃n
i=1 Fi. We

also have f(Fi) ⊆ Xi and so f(Fi) ⊆ Fi. Let g(x) be the point, which
is the reflexion of f(x) at the center c := (n−1, . . . , n−1). Then

c = λ(x)g(x) + (1− λ(x))f(x) , 0 < λ(x) < 1 , f(x), g(x) ∈ δS

with continuous functions λ(x) and g(x) : S −→ δS. For x ∈ Fi we
get g(x) 6∈ Fi because of the reflexion. Hence g(x) 6= x for all x ∈ δS.
Interior points of S aren’t fixed points either, because they are mapped
onto the boundary. This means that the continuous function g(x) has
no fixed point, in contradiction to Brouwer’s fixed point theorem, and
the assumption

⋂n
i=1Xi = ∅ was wrong.

3. Assume the axiom schema of separation for any predicate P (x)

∀A : ∃M : ∀x : (x ∈M ⇐⇒ x ∈ A ∧ P (x))

Show that |A| < |P(A)| where P(A) is the power set of A.

Reason: Cantor’s theorem.

Solution: x 7−→ {x} is an injective function from A to P(A), so
|A| ≤ |P(A)|. We need to show that there is no surjective function.
Assume

f : A� P(A)

is surjective. Set M := {x ∈ A |x 6∈ f(a)}. Then M is a set by the
axiom scheme of separation, and thus M ∈ P(A). Since f is onto, there
is an element a ∈ A such that f(a) = M. Hence by definition of f and
M

a ∈ f(a) = M ⇐⇒ a 6∈ f(a)

This shows that the assumption about the existence of a surjective
function f is false, and in particular |A| < |P(A)|.

4. Let σ1, . . . , σn be homomorphisms from a group G into the multiplica-
tive group F∗ of a field F. Show that they are F−linearly independent
if and only if they are pairwise distinct.

Reason: Dedekind’s independence theorem.

Solution: If the σi are linearly independent, then they are certainly
pairwise distinct, so assume the σi are all distinct. We proceed by in-
duction on n.

Let n = 1 and cσ1 = 0. Then cσ1(G) = 0 and since G 6= ∅ there is
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a g ∈ G such that cσ1(g) = 0. As im(σ1) ⊆ F∗ which has no zero
divisors we conclude c = 0 and σ1 is linearly independent. Assume
n > 1 and that the statement is true for n − 1 homomorphisms. Let∑n

j=1 cjσj = 0 for some cj ∈ F∗. We know from σ1 6= σn that there is
an element g0 ∈ G such that σ1(g0) 6= σn(g0).

0 =
n∑
j=1

cjσj(x) ∀ x ∈ G

=⇒ 0 =
n∑
j=1

cjσj(g0x) = c1σ1(g0)σ1(x) +
n∑
j=2

cjσj(g0)σj(x)

=⇒ 0 = σ1(g0)
n∑
j=1

cjσj(x) = c1σ1(g0)σ1(x) +
n∑
j=2

cjσ1(g0)σj(x)

=⇒ 0 =
n∑
j=2

cj(σj(g0)− σ1(g0))σj(x)

=⇒ cj(σj(g0)− σ1(g0)) = 0 ∀ j > 1

=⇒ cn(σn(g0)− σ1(g0)) = 0

=⇒ cn = 0

=⇒ 0 =
n−1∑
j=1

cjσj

=⇒ c1 = . . . = cn−1 = 0

The statement is already true for semigroups G.

5. Prove that general Heisenberg (Lie-)algebras H are nilpotent.

Reason: Engel’s theorem.

Solution: The general n−dimensional Heisenberg group (n ≥ 3) is

the linear algebraic group of matrices of the form

1 ~aτ b
0 In−2 ~c
0 0 1

 =

exp

0 ~aτ b
0 0n−2 ~c
0 0 0

 . The matrices in the argument of the exponential

function form their tangent space. They build a nilpotent associative
algebra. To see that it is also nilpotent as a Lie algebra we set Eij
to be the matrix with 1 at position (i, j) and zeros elsewhere. Then
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{E12, . . . , E1n, E2n, . . . , E(n−1)n} form a basis of H.

X =
n∑
j=2

xjE1j +
n−1∑
i=2

yiEin

[X,E1k] =
n∑
j=2

xj[E1j, E1k] +
n−1∑
i=2

yi[Ein, E1k] = −ykE1n

[X,Ekn] =
n∑
j=2

xj[E1j, Ekn] +
n−1∑
i=2

yi[Ein, Ekn] = xkE1n

[X,E1n] = 0

This shows that all linear transformations ad(X) are nilpotent, hence
H is a nilpotent Lie algebra by Engel’s theorem.

6. Prove that the polynomial N2
0

P−→ N0 defined as

P (x, y) =
1

2

(
(x+ y)2 + 3x+ y

)
is a bijection.

Reason: Theorem of Fueter-Pólya.

Solution:

2P (x, y) = (x+ y)(x+ y + 1) + 2x = x2 + 2xy + y2 + 3x+ y

∇(a,b)(2P ) = (2x+ 2y + 3, 2x+ 2y + 1)(a,b) = (2a+ 2b+ 3, 2a+ 2b+ 1)

∇(a,b)(2P )(u, v) = 2au+ 2bu+ 3u+ 2av + 2bv + v

Hence 2P (x, y) is strictly increasing in any direction of the first quad-
rant and at any point in its domain, i.e. in particular injective.

2P (0, y) = y2 + y and 2P (x, 0) = x2 + 3x. Let N ∈ N0 and

m := max{x ∈ N0 |x2 + x ≤ 2N}.

Then 2N < (m + 1)2 + m + 1 = m2 + 3m + 2 or 2N ≤ m2 + 3m + 1.
The right side is always odd, whereas the left is even. Hence we may
conclude that

m2 +m ≤ 2N ≤ m2 + 3m.

Set
2N = m2 + 3m− k with k ∈ {0, 2, 4, . . . , 2m}
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2P

(
m− k

2
,
k

2

)
=

(
m− k

2

)2

+ 2

(
m− k

2

)
k

2
+

(
k

2

)2

+ 3

(
m− k

2

)
+
k

2

= m2 + 3m− k = 2N

and P (x, y) is surjective.

It can be shown in a rather complicated proof, that P (x, y) and P (y, x)
are the only quadratic real polynomials that enumerate N2 in such a way
(Theorem of Fueter-Pólya). It is not known whether the requirement
quadratic can be dropped.

7. Prove that the spectrum of every element of a complex Banach algebra
B with 1 is nonempty. Conclude that if B is a division ring, then
B ∼= C.

Reason: Theorem of Gelfand-Mazur.

Solution: Assume there is an element a ∈ B such that all a− λ1 are
invertible (λ ∈ C). Then we have for two distinct numbers λ 6= µ

(a− λ1)−1(λ− µ)(a− µ1)−1 = (a− λ1)−1 [(a− µ1)− (a− λ1)] (a− µ1)−1

= [(a− λ1)−1(a− µ1)− 1](a− µ1)−1

= (a− λ1)−1 − (a− µ1)−1

Let f : B −→ C be an arbitrary homomorphism from B∗. Then

f((a− λ1)−1)− f((a− µ1)−1)

λ− µ
= f((a− λ1)−1(a− µ1)−1)

The right-hand side exists for µ → λ because f and all algebraic op-
erations including the inversion in B are continuous. Hence λ

ϕ7−→
f((a− λ1)−1) is holomorph on C. Furthermore

lim
|λ|→∞

‖(a− λ1)−1‖ = 0

so ϕ is bounded and vanishes at infinity. Now ϕ is constant by Liou-
ville’s theorem, i.e. identically zero. Since f ∈ B∗ has been chosen
arbitrarily, the theorem of Hahn-Banach yields that (a − λ1)−1 = 0
which is impossible for an invertible element.

8. Let X1, . . . , Xn be independent random variables, such that almost
certain ai ≤ Xi − E(Xi) ≤ bi, and let 0 < c ∈ R. Prove that

Pr

(
n∑
i=1

(Xi − E(Xi)) ≥ c

)
≤ exp

(
−2c2∑n

i=1(bi − ai)2

)
.
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Reason: Hoeffding inequality.

Solution: Let’s prove the Markov-Chebyshev inequality first. Let
(Ω,Σ, ν) be a measure space, f : Ω −→ R+

0 a measurable function,
and ε, p > 0 real numbers. Then∫

Ω

fp dν ≥
∫
x | f(x)≥ε

fp dν ≥
∫
x | f(x)≥ε

εp dν = εpν (x | f(x) ≥ ε)

This leads to the exponential version

Pr(X ≥ a) = Pr(exp(X) ≥ exp(a))

≤ inf
p>0

1

exp(ap)

∫
R

exp(pX) dPr = inf
p>0

E(exp(pX))

exp(pa)

With ν = Pr , f = |X − E(X)| and p = 2 we get the simple version

Pr(|X − E(X)| ≥ kσ) ≤ 1

k2

where σ2 = V ar(X). This can also be seen directly by conditional
probabilities

σ2 = E((X − E(X))2)

= E((X − E(X))2 | kσ ≤ |X − E(X)|) · Pr(kσ ≤ |X − E(X)|)
+ E((X − E(X))2 | kσ > |X − E(X)|) · Pr(kσ > |X − E(X)|)
≥ (kσ)2 · Pr(kσ ≤ |X − E(X)|) + 0 · Pr(kσ > |X − E(X)|)
= k2σ2 Pr(kσ ≤ |X − E(X)|)

For the matter of convenience we set Yi := Xi − E(Xi) so E(Yi) = 0.
Moreover, consider for z > 0 the strictly monotone increasing function
x 7→ exp(zx) on the real numbers.

We get from the exponential version of the Markov-Chebyshev inequal-
ity

Pr

(
n∑
i=1

Yi ≥ c

)
≤ inf

z>0

E (exp (z
∑n

i=1 Yi))

exp(zc)
≤
∏n

i=1E(exp(zYi))

exp(zc)

The real exponential function is convex, so by the given conditions

exp(zYi) = exp

(
bi − Yi
bi − ai

zai +
Yi − ai
bi − ai

zbi

)
≤ bi − Yi
bi − ai

exp(zai) +
Yi − ai
bi − ai

exp(zbi)
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and with E(Yi) = 0 and

E(exp(zYi)) ≤
bi

bi − ai
exp(zai)−

ai
bi − ai

exp(zbi)

= exp(−uiλi) ((1− λi) + λi exp(ui))[
1− uiλi +

u2
iλ

2
i

2
− u3

iλ
3
i

3!
± . . .

]
·

·
[
1 + uiλi +

u2
iλi
2

+
u3
iλi
3!

+ . . .

]
=

[
1 + uiλi +

u2
iλi
2

+
u3
iλi
3!

+ . . .

]
−
[
uiλi + u2

iλ
2
i +

u3
iλ

2
i

2
+ . . .

]
+

[
u2
iλ

2
i

2
+
u3
iλ

3
i

2
+ . . .

]
= 1 +

u2
i

2

(
λi − λ2

i

)︸ ︷︷ ︸
≤1/4

+O(λiu
3
i )︸ ︷︷ ︸

<0

≤ 1 +
u2

i

8
≤ exp

(
u2

i

8

)

with λi = − ai
bi − ai

, ui = z(bi − ai).

Summing up the results, we have

Pr

(
n∑
i=1

Yi ≥ c

)
≤
∏n

i=1 exp(u2
i /8)

exp(zc)
= exp

(
−zc+

n∑
i=1

u2
i

8

)

which leads by the choice z :=
4c∑n

i=1(bi − ai)2
to

Pr

(
n∑
i=1

Yi ≥ c

)
≤ exp

(
− 4c2∑n

i=1(bi − ai)2
+
z2

8

n∑
i=1

(bi − ai)2

)

= exp

(
−32c2 + 16c2

8
∑n

i=1(bi − ai)2

)
= exp

(
−2c2∑n

i=1(bi − ai)2

)
9. Let G ⊆ C be a non-empty, open, connected subset, and f, g holomor-

phic functions on G. Show that the following statements are equivalent:

(a) f(z) = g(z) for all z ∈ G.
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(b) {z ∈ G | f(z) = g(z)} has a limit point.

(c) There is a z ∈ G such that f (n)(z) = g(n)(z) for all n ∈ N0.

Reason: Identity theorem.

Solution: Holomorphic function are analytic, i.e. can locally be rep-
resented by their Taylor series.

(a) =⇒ (b) is obvious since any point in G is a limit point of G.

(b) =⇒ (c). Let z0 ∈ G be a limit point of the set of coincidence points.
W.l.o.g. we assume z0 = 0. If (c) wasn’t true, then there is a minimal
N ∈ N0 such that f (N)(0) 6= g(N)(0). We then have in a neighborhood
of 0

f(z)− g(z) = zN
∞∑
n=0

f (N+n)(0)− g(N+n)(0)

(N + n)!
zn︸ ︷︷ ︸

=:h(z)

and {z ∈ G |h(z) = 0} = {z ∈ G | f(z) = g(z)} since h(z) is continu-

ous. In particular 0 = h(0) =
f (N)(0)− g(N)(0)

N !
in contradiction to the

minimality of N.

(c) =⇒ (a). It is sufficient to show that

A := {z ∈ G | f (n)(z) = g(n)(z) ∀n ∈ N0}

is non-empty, open and closed since G is connected. A 6= ∅ by condition
(c). A is also closed because

A =
∞⋂
i=0

{z ∈ G | f (n)(z) = g(n)(z)} =
(
f (n) − g(n)

)−1
({0})

it is the union of preimages of a closed set under a continuous func-
tion. f − g is an analytic function and as such equal to its Taylor
series in a neighborhood of z ∈ A, i.e. identically zero. However, this
neighborhood is entirely contained in A, i.e. A is open.

10. Prove that π2 is irrational.

Reason: Calculus.

Solution: Assume π2 =
p

q
with p, q ∈ N and define

Pn(x) :=
xn(1− x)n

n!
, n!Pn(x) =

2n∑
k=n

ckx
k ∈ Z[x]
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Then

P (j)
n (0) =

0 if j < n ∧ j > 2n
j!cj
n!
∈ Z if n ≤ j ≤ 2n

and P
(j)
n (x) = (−1)jP

(j)
n (1−x) so P

(j)
n (1) = (−1)jP

(j)
n (0) ∈ Z, too. Set

Qn(x) := qn
(
π2nPn(x)− π2n−2P

′′

n (x)± . . .+ (−1)nπ0P (2n)
n (x)

)
We already know that Qn(0), Qn(1) ∈ Z.

d

dx
(Q′n(x) sin(πx)− πQn(x) cos(πx)) =

(
Q
′′

n(x) + π2Qn(x)
)

sin(πx)

= qnπ2n+2Pn(x) sin(πx) = pnπ2Pn(x) sin(πx)

=⇒

pnπ

∫ 1

0

Pn(x) sin(πx) dx =

[
Q′n(x) sin(πx)

π
−Qn(x) cos(πx)

]1

0

= Qn(1) +Qn(0) ∈ Z

On the other hand we have by definition of Pn(x) on [0, 1]

0 < pnπ

∫ 1

0

Pn(x) sin(πx) ≤ πpn

n!

n→∞−→ 0

and Qn(0) +Qn(1) cannot be an integer for large enough n.

11. (HS-1) Find all functions f, g such that

f, g : R\{−1, 0, 1} −→ R

xf(x) = 1 +
1

x
g

(
1

x

)
and

1

x2
f

(
1

x

)
= x2g(x)

Extra: Determine a number r ∈ R such that |f(x) − f(x0)| < 0.001
whenever |x − x0| < r and x0 = 2, and explain why there is no such
number if we choose x0 = 1 even if we artificially define some function
value for f(1).

Reason: Real functions.
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Solution: From the second equation we get

xg(x) =
1

x3
f

(
1

x

)
=⇒ 1

x
g

(
1

x

)
=⇒ xf(x) = 1 + x3f(x)

=⇒ 1 = f(x)(x− x3) = f(x)x(1− x)(1 + x) 6= 0

=⇒ f(x) =
1

x(1− x)(1 + x)
=

1

x− x3

=⇒ g(x) =
1

x4
f

(
1

x

)
=⇒ g(x) =

1

x4
· 1

1

x
− 1

x3

=
1

x(x2 − 1)

=
1

x(x− 1)(x+ 1)
= −f(x)

One can easily check that the pair

(
1

x− x3
,

1

x3 − x

)
satisfies the two

initial conditions, i.e. that this pair is a feasible solution.

Extra: Our goal is to achieve

|f(x)− f(2)| =
∣∣∣∣f(x) +

1

6

∣∣∣∣ =

∣∣∣∣6 + x− x3

6(x− x3)

∣∣∣∣ < 0.001

whenever |x− 2| < r, i.e. 2− r < x < 2 + r for some real number r. It
is only asked for one such number, so we do not need to find a unique,
smallest, or greatest one.

Let’s start with the upper bound. Keep in mind that x ∼ 2 and r ∼ 0.∣∣∣∣6 + x− x3

6(x− x3)

∣∣∣∣ =
|6 + x− x3|

6 · |x| · |1− x| · |1 + x|
<

6 + (2 + r) + (r − 2)3

6 · (2− r)(r + 1)(3− r)

=
r3 − 6r2 + 13r

6 · (r3 − 4r2 + r + 6)
=
r

6
· 13− 6r + r2

6 + r − 4r2 + r3

<
r

6
· 18

1
= 3r < 0.001

for r := 0.0001 = 10−4. Let us check the lower bound with this value.∣∣∣∣6 + x− x3

6(x− x3)

∣∣∣∣ > 6 + (2− r)− (2 + r)3

6 · (2 + r)(1− r)(3 + r)
= −r

6
· 13 + 6r + r2

6− r − 4r2 − r3

> −r
6
· 18

1
= −3r = −0.0003 > −0.001
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Finally, let us define f(1) = c ∈ R for some real number c ∈ R. Then
for n > 10

f(x) =
1

x(1− x)(1 + x)


> 0

n→∞−→ ∞ if x = 1− 1

n

=
1

c− c3
= const. if x = 1

< 0
n→∞−→ −∞ if x = 1 +

1

n

Hence the distance |f(x)− f(1)| between the function values becomes

arbitrary large at some location in 1− r < 1− 1

n
< x < 1 +

1

n
< 1 + r.

12. (HS-2) Solve the following equation system in R3

x2 + y2 + z2 = 1 ∧ x+ 2y + 3z =
√

14

Extra: Give an alternative solution in case you have the additional
information that the solution is unique.

Reason: Non-linear equations.

Solution: Assume we have a solution (x, y, z), then

0 = (
√

14− 2y − 3z)2 + y2 + z2 − 1

= 10z2 + 12yz − 6z
√

14− 4y
√

14 + 5y2 + 13

= 10

(
z +

3

5
y − 3

10

√
14

)2

+
7

5
y2 +

2

5
− 2

5
y
√

14

= 10

(
z +

3

5
y − 3

10

√
14

)2

+
7

5

(
y − 1

7

√
14

)2

=⇒

y =

√
2

7
∧ z =

3

10

√
14− 3

5
y =

3

2

√
2

7
=

3√
14

=⇒

x = 14− 2

√
2

7
− 9√

14
=

1√
14

It is easy to check that conversely the triple

(
1√
14
,

2√
14
,

3√
14

)
satisfies

the conditions of the statement.

Extra: Given that the equation system has a unique solution, we
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conclude that we have the equations of a sphere and a plane which
intersect at exactly one point. This makes the plane a tangent space
to the sphere. The tangent space of the sphere x2 + y2 + z2 = 1 = 1 at
~p = (x0, y0, z0) are all perpendicular vectors, i.e.

~p+


vxvy
vz

 : vxx0 + vyy0 + vzz0 = 0

 = ~p+ α

 z0

0
−x0

+ β

 0
z0

−y0


This means for a point (x, y, z) on the plane that

x = x0 + αz0 , y = y0 + βz0 , z = z0 − x0α− y0β

z0z = z2
0 − x0(x− x0)− y0(y − y0)

x0x+ y0y + z0z = z2
0 + x2

0 + y2
0 = 1

Hence we get by comparison of coefficients with the given equation of
the plane

x0 =
1√
14
, y0 =

2√
14
, z0 =

3√
14

13. (HS-3) If (xn)n∈N ⊆ R>0 is a monotone decreasing sequence of positive
real numbers such that for every n ∈ N

x1

1
+
x4

2
+
x9

3
+ . . .+

xn2

n
≤ 1

prove that for every n ∈ N
x1

1
+
x2

2
+
x3

3
+ . . .+

xn
n
≤ 3

Extra: Prove that both sequences converge to 0.

Reason: Sequences.

Solution: For every natural number n there is a number k ∈ N such
that k2 ≤ n < (k + 1)2. Hence

n∑
i=1

xi
i
≤

k+1∑
i=2

i2−1∑
j=(i−1)2

xj
j
≤

k+1∑
i=2

(2i− 1)
x(i−1)2

(i− 1)2

=
k∑
i=1

(2i+ 1)
xi2

i2
≤ 3

k∑
i=1

xi2

i
≤ 3 · 1 = 3

by the given condition.
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Extra: Assume the sequence (xn)n∈N becomes stationary at one point,
say xn = a for all n ≥ N. Then for any M > N

M∑
i=1

xi
i

=
N−1∑
i=1

xi
i︸ ︷︷ ︸

=:C1

+
M∑
i=N

a

i
= C1 + a ·

M∑
i=N

1

i︸ ︷︷ ︸
=:CM

≤ 3

for all M by assumption. However limM→∞CM = ∞, which cannot
both hold. Hence the monotone decreasing sequences are strictly mono-
tone decreasing, i.e.

1 ≥ x1 > x2 > x3 > . . . > xn > . . . > 0.

If we now cut the interval [0, 1] in half, then the right half must contain
infinitely many sequence members. Then we choose this half and cut it
again into half. The right part has to contain infinitely many sequence
members again. Going on with these nested intervals, we get interval
lengths that converge to zero. If we pick one sequence member from
each interval, we get a subsequence which converges to a real number
(because R is complete). By strict monotony the sequence itself has to
converge to the same number, say L ∈ [0, 1].

Assume limn→∞ xn = L > 0. Then

3 ≥ lim
n→∞

(x1

1
+ . . .+

xn
n

)
≥ L · lim

n→∞

n∑
i=1

1

n
=∞

which cannot hold, hence our assumption was wrong and L = 0.

14. (HS-4) Solve the following equation system for real numbers:

(1) x+ xy + xy2 = −21

(2) y + xy + x2y = 14

(3) x+ y = −1

Extra:
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Consider the two elliptic curves and observe that one has two con-
nection components and the other one has only one. Determine the
constant c ∈ [1, 3] in y2 = x3 − 2x + c where this behavior exactly
changes. What is the left most point of this curve?

Reason: Non-linear equations.

Solution: Adding the (1) and (2) and using (3) gets

(x+ y) + 2xy + xy(x+ y) = −7

=⇒ xy = −6

=⇒ x− 6y = −15

=⇒
[
x
y

]
=

[
1 −6
1 1

]−1

·
[
−15
−1

]
=

1

7

[
1 6
−1 1

]
·
[
−15
−1

]
=

[
−3
2

]
The pair (−3, 2) conversely satisfies the required conditions, and is thus
the unique solution.

Extra: The curves are symmetric to the x−axis y = 0. Moreover, the
behavior changes at the point where the two most right extremal points
coincide. Hence we have to find the points, where

dy

dx
= 0

Now 2 · y(x) · y′(x) = 3x2 − 2 so for our points hold x = ±
√

2

3
. The

negative values lead to the extremal points on the left, and the positive
value is the one which we are interested in. We also know that for
symmetry reasons, that

y2

(√
2

3

)
= 0 =

√
2

3

3

− 2

√
2

3
+ c = −4

3

√
2

3
+ c

=⇒ c =
4

3

√
2

3
=

√
32

27
≈ 1.089

To determine the left most point, we search for the points where y = 0,

i.e. 0 = x3− 2x+

√
32

27
= x3− 2x+

4

3

√
2

3
. We know from the previous
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calculation that x =

√
2

3
is a solution. Long division shows

(
x3 − 2x+

4

3

√
2

3

)
:

(
x−

√
2

3

)
= x2 +

√
2

3
x− 4

3

=

(
x+ 2

√
2

3

)(
x−

√
2

3

)

x3 − 2x+
4

3

√
2

3
=

(
x+ 2

√
2

3

)(
x−

√
2

3

)2

The left most point is thus −2

√
2

3
≈ −1.633 and the double root at

x =

√
2

3
confirms the previous result.

15. (HS-5) Find all real numbers m ∈ R, such that for all real numbers
x ∈ R holds

f(x,m) := x2 + (m+ 2)x+ 8m+ 1 > 0 (∗)

and determine the value of m for which the minimum of f(x,m) is
maximal. What is the maximum?

Extra: The set of all intersection points of two perpendicular tangents
is called orthoptic of the parabola. Prove that it is the directrix, the
straight parallel to the tangent at the extremum on the opposite side
of the focus.

Reason: Parametric equation.

Solution: The quadratic equation x2 + (m+ 2)x+ 8m+ 1 = 0 has the
solutions

−m+ 2

2
± 1

2

√
m2 − 28m

If m ≤ 0 then m2 − 28m ≥ 0 and the parabola has at least one inter-
section with the x−axis, i.e. (∗) cannot be greater than zero for all real
numbers.

If m ≥ 28 then the discriminant is again not negative and the parabola
has at least one intersection with the x−axis again, i.e. (∗) cannot be
greater than zero for all real numbers.
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Hence the only possible numbers are 0 < m < 28 in which case the dis-
criminant is negative and the parabola does not intersect the x−axis:

x2 + (m+ 2)x+ 8m+ 1 =

(
x+

m+ 2

2

)2

− (m+ 2)2

4
+ 8m+ 1

≥ −1

4

(
m2 − 28m

)
= −1

4
m(m− 28) > 0

for all x ∈ R and 0 < m < 28. The minimum of f(x,m) for each
parameter is determined by

d

dx
f(x,m) = 0 = 2x+m+ 2 =⇒ x = −m+ 2

2

so we want to maximize

f

(
−m+ 2

2
,m

)
=

(
m+ 2

2

)2

− (m+ 2)
m+ 2

2
+ 8m+ 1

= −1

4
(m+ 2)2 + 8m+ 1 = −1

4
m2 + 7m

which is maximal at −1

2
m+ 7, i.e. m = 14 and f(−8, 14) = 49.

Extra: A parabola is defined as the set of points, that has equal dis-
tance to its focus and its directrix. We may assume that our parabola

has the equation y = ax2 , a 6= 0. Then its focus is F =

(
0,

1

4a

)
and

its directrix L thus y = − 1

4a
. This means

P = {(x, y) ∈ R2 | y = ax2} = {p ∈ R2 | d(F, p) = d(F,L)}.

The slope of P is given by the first derivative m = 2ax. Hence

P =

{(
m

2a
,
m2

4a

) ∣∣∣∣ m ∈ R}

and the tangent T with slope m has the equation y = mx − m2

4a
.

Let (x0, y0) 6∈ P be a point on T. Then y0 = mx0 −
m2

4a
⇐⇒ 0 =

m2 − 4ax0m+ 4ay0 which has two solutions, corresponding to the two
possible tangents from (x0, y0). Now if the tangents meet in a right
angle at (x0, y0), then the product of their slopes is −1. This equals
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the product of the solutions of the quadratic equation, i.e. by Vieta’s
formulas

−1 = 4ay0 =⇒ y0 = − 1

4a

so the set of intersection points is L, what had to be shown.
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4 September 2021

1. Let f be a function defined on (0,∞) such that f(x) > 0 for all x > 0.
Suppose that f has the following properties:

(a) log f(x) is a convex function.

(b) f(x+ 1) = x · f(x) for all x > 0.

(c) f(1) = 1.

Then f(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
=: Γ(x) for all x > 0.

Reason: Bohr-Mollerup theorem.

Solution: The given conditions (b), (c) allows to conclude

f(x+ n) = f(x+ n− 1 + 1)

= (x+ n− 1)f(x+ n− 2 + 1)

= (x+ n− 1)(x+ n− 2)f(x+ n− 3 + 1)

=

...

=

= (x+ n− 1)(x− n− 2) · · · (x+ 1)xf(x)

This implies in particular that f(N + 1) = N ! for all N ∈ N and if
we can show f(x) = Γ(x) for all 0 < x ≤ 1 then we conclude for all
N < y = x+N ≤ N + 1
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f(y) = f(x+N) = (x+N − 1)(x−N − 2) · · · (x+ 1) · x · Γ(x)

= (x+N − 1)(x−N − 2) · · · (x+ 1) · x · lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)

= lim
n→∞

(x+N − 1)(x−N − 2) · · · (x+ 1) · x · n!nx

x · (x+ 1) · · · (x+ n)

= lim
n→∞

n!nx

(x+N)(x+N + 1) · · · (x+ n)

= lim
n→∞

n!ny−N

y(y + 1) · · · (y −N + n)

= lim
n→∞

n!ny

y · (y + 1) · · · (y + n)
· (y −N + n+ 1) · · · (y + n)

nN

= lim
n→∞

n!ny

y · (y + 1) · · · (y + n)
·
(
y

n
− N

n
+
n

n
+

1

n

)
· · ·
(y
n

+
n

n

)
= lim

n→∞

n!ny

y · (y + 1) · · · (y + n)
· 1N

= Γ(y)

Hence we may assume that 0 < x ≤ 1. Let n > 2 be some integer.
Since log f(x) is convex, we have that the function lies beneath the
secant of any two points at a, b > 0.

log f(x) ≤ log f(a) +
log f(b)− log f(a)

b− a
· (x− a) for all x ∈ (a, b)

⇐⇒
log f(x)− log f(a)

x− a
≤ log f(b)− log f(a)

b− a
for all a < x < b

Thus for n < n+ x ≤ n+ 1

log f(n+ x)− log f(n)

(n+ x)− n︸ ︷︷ ︸
=

log f(n+ x)− log(n− 1)!

x

≤ log f(n+ 1)− log f(n)

(n+ 1)− n︸ ︷︷ ︸
=logn

and for n− 1 < n < n+ x

log f(n)− log f(n− 1)

n− (n− 1)︸ ︷︷ ︸
=log(n−1)

≤ log f(n+ x)− log f(n− 1)

n+ x− (n− 1)︸ ︷︷ ︸
=

log f(n+ x)− log(n− 2)!

x+ 1
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Thus

(x+ 1) log(n− 1) + log(n− 2)! ≤ log f(n+ x) ≤ log(n− 1)! + x log n

log ((n− 1)x(n− 1)!) ≤ log f(n+ x) ≤ log (nx(n− 1)!)

(n− 1)x(n− 1)!

x(x+ 1) · · · (x+ n− 1)︸ ︷︷ ︸
=:L(n)

≤ f(x) ≤ nx(n− 1)!

x(x+ 1) · · · (x+ n− 1)︸ ︷︷ ︸
=:R(n)

Since f(x) in the sandwich is independent of n we may write

L(n+1) =
nxn!

x(x+ 1) · · · (x+ n)
≤ f(x) ≤ R(n) =

nxn!

x(x+ 1) · · · (x+ n)
·x+ n

n

and letting n→∞ we get Γ(x) ≤ f(x) ≤ Γ(x) which we had to show.

2. Let T = (x1, x2, . . . , xm) be a sequence of not necessarily distinct reals.
For any positive b, define

Tb := {(xi, xj) | 1 ≤ i, j ≤ m, |xi − xj| ≤ b}.

Show that for any sequence T and for every integer r > 1,

|Tr| < (2r − 1)|T1|.

Reason: Combinatorics.

Solution: We apply induction on |T | = m. The result is trivial for
m = 1. Assuming it holds for m − 1, we prove it for m > 1. Given a
sequence T = (x1, . . . , xm) let t+ 1 be the maximum number of points
of T in a closed interval of length 2 centered at a member of T. Let xi
be any rightmost point of T so that there are t + 1 members of T in
the interval [xi − 1, xi + 1] and define T ′ := T − {xi}. The number of
members of T ′ in the interval [xi − 1, xi + 1] is clearly t and hence xi
appears in precisely 2t+ 1 ordered pairs of T1. Thus

|T1| = 2t+ 1 + |T ′1|.

The interval [xi − r, xi + r] is the union of the 2r − 1 smaller intervals

[xi−r, xi−r+1), . . . , [xi−2, xi−1), [xi−1, xi+1], (xi+1, xi+2], . . . , (xi+r−1, xi+r].

By the choice of xi, each of these smaller intervals can contain at most
t + 1 members of T , and each of the last r − 1 ones, which lie to the
right of xi, can contain at most t members of T. Altogether there are
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thus at most (r − 1)(t + 1) + rt members of T ′ in [xi − r, xi + r] and
hence

|Tr| ≤ 2(r − 1)(t+ 1) + 2rt+ 1 + |T ′r| = (2r − 1)(2t+ 1) + |T ′r|.

By induction hypothesis |T ′r| < (2r−1)|T ′1| and hence |Tr| < (2r−1)|T1|.

3. Let X, Y be two independent identically distributed real random vari-
ables. For a positive b, define pb := prob (|X − Y | ≤ b) . Then for every
integer r, pr ≤ (2r − 1)p1. Thus

prob (|X − Y | ≤ 2) ≤ 3 · prob (|X − Y | ≤ 1)

Reason: Stochastic.

Solution: Fix an integer m, and let S := (x1, . . . , xm) be a random
sequence ofm elements, where each xi is chosen, randomly and indepen-
dently, according to the distribution of X. By the previous statement

|Sr| < (2r − 1)|S1|.

Therefore, the expectation of |Sr| is smaller than that of (2r − 1)|S1|.
However, by the linearity of expectation it follows that the expectation
of |Sb| is precisely m+m(m− 1)pb for every b > 0. Thus

m+m(m− 1)pr < (2r − 1)(m+ (m− 1)p1),

implying that for every integer m,

pr < (2r − 1)p1 +
2r − 2

m− 1

m→∞−→ (2r − 1)p1

It can be proven that even the strict inequality

prob (|X − Y | ≤ 2) < 3 · prob (|X − Y | ≤ 1)

holds, in which case we speak of the 1− 2− 3 theorem.

4. Let F be a field and G a finite group, such that charF - |G|. Prove
that FG is semisimple, and show that this is not true if charF | |G|.

Reason: Theorem of Maschke.

Solution: Let W ⊆ V be finite-dimensional FG-modules. Pick an
idempotent e ∈ EndF(V ) with eV = W and define

e :=
1

|G|
∑
g∈G

geg−1
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where the elements of G are considered as endomorphisms of V. Then

he =
1

|G|
∑
g∈G

hgeg−1 =
1

|G|
∑
g∈G

(hg)e(hg)−1h = eh

for all h ∈ G and thus e ∈ EndFG(V ). Since W is a submodule if V, the
endomorphism e still satisfies eV ⊆ W and e|W = idW . Hence e is an
idempotent with eV = W, and we have

V = W ⊕ (idV −e)V

i.e. every submodule splits and V is semisimple, and so is FG.

Let x :=
∑

g∈G g ∈ FG satisfies gx = x for all g ∈ G and x2 = |G|x = 0.
Thus FGx = Fx is a submodule of FG which contains no idempotent.
In particular, Fx is not projective, and hence FG is not semisimple.

5. A group G together with a topology, such that the mapping on G×G
(equipped with the product topology) to G given by (x, y) 7−→ xy−1 is
continuous, is called a topological group (e.g. a Lie group). Prove

(a) G is a topological group if and only if inversion and multiplication
are continuous.

(b) The mappings x 7−→ xg and x 7−→ gx are homeomorphisms for
each g ∈ G.

(c) Each open subgroup U ≤ G is closed, and each closed subgroup
U ≤ G of finite index is open. If G is compact, then each open
subgroup is of finite index.

(d) Let H ≤ G be a subgroup equipped with the subspace topology,
K E G a normal subgroup, and G/K equipped with the quotient
space topology. Then H and G/K are again topological groups
and the projection π : G� G/K is open.

(e) G is Hausdorff if and only if {1} is a closed set in G. G/K is
Hausdorff for a normal subgroup K E G, if and only if K is
closed in G. If G is totally disconnected, then G is Hausdorff.

(f) Let G be a compact topological group and {Xj (j ∈ I)} ⊆ G a
family of closed subsets such that for all i, j ∈ I there is a k ∈ I
with Xk ⊆ Xi ∩Xj. Then we have for any closed subset Y ⊆ G

Y ·

(⋂
i∈I

Xi

)
=
⋂
i∈I

Y Xi
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Reason: Topological Groups.

Solution:

(a) If inversion and multiplication are continuous, then their compo-
sition is continuous, too. Now let

ϕ : G×G −→ G , ϕ(x, y) := xy−1

be continuous. Inversion ι is the composition of the continuous
functions

G
x→(1,x)−→ {1} ×G

ϕ|{1}×G−→ G

and thus continuous, too. For the multiplication we get the com-
position of

G×G (id,ι)−→ G×G ϕ−→ G

continuous functions again.

(b) It is sufficient to prove it for µg(x) := xg. Now

µg : G
x→(g,x)−→ {g} ×G

ϕ|{g}×G−→ G

is continuous as it is the composition of continuous functions. By
µ−1
g = µg−1 we see that the inverse function is continuous, too.

(c) Let U ≤ G be a open subgroup, and g ∈ G−U. Then gU ⊆ G−U
is open because left multiplication is a homeomorphism, and

G− U =
⋃

g∈G−U

g =
⋃

g∈G−U

gU

is a union of open sets, i.e. open, i.e. U is closed.
Next let A ≤ G be a closed subgroup of finite index. Then

G− A =
⋃

g∈G−A

g =
⋃

g∈G−A

gA =
n⋃
g=1

gA

is a finite union of closed sets, hence G − A is closed and A is
open.
If G is compact, and U ≤ G an open subgroup, then {gU ∈ G/U}
define an open, disjoint cover of G which has a finite subcover, i.e.
G/U is of finite index.
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(d) H is a topological group since the subspace topology is defined
that way. Let V ⊆ G/K be an open set. Then V := π−1(V ) is
open by definition of the quotient topology, and π(V ) = V K = V
since π is surjective. Now let V ⊆ G be open. Then V k is open
for each k ∈ K since right multiplication is a homeomorphism and
thus open, hence

V K =
⋃
k∈K

V k = π(V ) ⊆ G/K

is open. So π is continuous and open. Set

ϕ : G/K ×G/K −→ G/K , ϕ(gK, hK) = gh−1K

Let V ⊆ G/K be an open set, and (gK, hK) ∈ ϕ−1(V ). Since
(g, h) 7−→ π(gh−1) = gh−1K is continuous, there are open neigh-
borhoods Vg, Vh ⊆ G of g, h such that VgV

−1
h ⊆ π−1(V ). Since π

is open, π(Vg) × π(Vh) = VgK × VhK ⊆ G/K × G/K is an open
neighborhood of (gK, hK) ∈ G/K × G/K. This proves that ϕ is
continuous since VgK × VhK ⊆ ϕ−1(V ).

(e) An equivalent definition of a Hausdorff space is, that it is a topo-
logical space in which all singleton sets are the intersection of
their closed neighborhoods. In particular {1} ⊆ G is closed if G
is Hausdorff.
Now let {1} be closed. Since right multiplication is closed, all
sets {ab−1} = µab−1(1) are closed, too. Thus there are disjoint
open neighborhoods V{1}, V{ab−1} in case a 6= b. Since right multi-
plication is open, Vb = V{1}b and Va = V{ab−1}b are disjoint open
neighborhoods of a and b, i.e. G is a Hausdorff space. If G/K is
Hausdorff, then {1} ⊆ G/K is closed, and so is K = π−1({1}) ⊆ G
since π is continuous. If conversely K ⊆ G is closed, then G−K
is open. Since π is open,

π(G−K) = π

( ⋃
g∈G−K

g

)
=
⋃
g 6∈K

π(g) =
⋃
g 6∈K

gK =
⋃
g 6=1

g = G/K−{1}

is open, too, and {1} ⊆ G/K is closed, i.e. G/K is Hausdorff.
Finally, G is totally disconnected, if the empty set and all singleton
sets are the only connection components. But these are always
closed, so {1} is closed and G is Hausdorff.
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(f) Clearly

Z := Y ·

(⋂
i∈I

Xi

)
⊆
⋂
i∈I

Y Xi

Assume there is an element g 6∈ Z, then Y −1g ∩
(⋂

i∈I Xig
)

= ∅
since otherwise there would be an element h = y−1g for some
y ∈ Y and h ∈ Xi for all i ∈ I, i.e. g = yh ∈ Z. Since G is compact
and Y −1g,Xi (i ∈ I) are all closed with empty intersection, their
complements build an open cover of G, from which finitely many
will do. In any case, their complements intersect to the empty
set, hence Y −1g ∩ (∩ni=1Xi) = ∅. Now by our hypothesis we can
recursively find a k ∈ I such that Xk ∈ Xi for all i = 1, . . . , n.
If g = yx ∈ Y Xk, then y−1g ∈ Y −1g ∩Xk ⊆ Y −1g ∩ (∩ni=1Xi) , a
contradiction. Thus g 6∈ Y Xk, i.e. g 6∈

⋂
i∈I Y Xi what had to be

shown.

6. Let (Xn, dn)n∈N0 be a sequence of complete metric spaces, and let
(fn)n∈N0 be a sequence of continuous functions fn : Xn+1 −→ Xn such
that the image fn(Xn+1) ⊆ (Xn, dn) is dense for all n ∈ N0. Then

M0 := {v0 ∈ X0 | ∃ (vn)n∈N ∀n ∈ N : vn ∈ Xn ∧ fn−1(vn) = vn−1}

and

M0 ⊆M :=
∞⋂
n=0

(f0 ◦ f1 ◦ . . . ◦ fn)(Xn+1)

are dense in (X0, d0). In particular M 6= ∅ in case X0 6= ∅.

Reason: Mittag-Lefler theorem.

Solution: Let x ∈ X0 and ε > 0. We want to show that there is a
v0 ∈ M0 such that d0(x, y) ≤ ε. We begin by constructing inductively
a sequence (yn)n∈N0 with the properties

yn ∈ Xn ∧ dn(yn, fn(yn+1)) ≤ ε

2n+1
(1)

dk((fk ◦ fk+1 ◦ . . . ◦ fn−1)(yn), (fk ◦ fk+1 ◦ . . . ◦ fn)(yn+1)) ≤ ε

2n+1
(2)

for all n ∈ N0 and 0 ≤ k < n. We set y0 := x and find y1 ∈ X1 with
d0(y0, f0(y1)) < ε/2 by the density of f0(X1) ⊆ X0. This satisfies both
conditions in case n = 0.
Now assume we have constructed the points y0, . . . , ym for some m ∈ N
such that the conditions hold for 0 ≤ n < m and 0 ≤ k < n. Since
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fm(Xm+1) ⊆ Xm is dense, there is a sequence (zj)j∈N ⊆ Xm+1 with
limj→∞ fm(zj) = ym. By continuity of f0, f1, . . . we also have for all
k = 0, . . . ,m− 1

lim
j→∞

dk((fk ◦ . . . ◦ fm−1)(ym), (fk ◦ . . . ◦ fm)(zj)) = 0

Hence there is a j0 ∈ N such that with ym+1 := zj0 both conditions
hold even for n = m and 0 ≤ k < m. We have thus constructed the
required sequence.

For all k, j ∈ N0 define

uk,0 := yk ∧ uk,j := (fk ◦ . . . ◦ fk+j−1)(yk+j).

By induction, condition (2), and the triangle inequality

dk(uk,j, uk,j+p) ≤
p∑

m=1

dk(uk,j+m−1, uk,j+m)

≤ ε

2k+j

p∑
m=1

1

2m

<
ε

2k+j

j→∞−→ 0 (3)

So all sequences (uk,j)j∈N0 ⊆ (Xk, dk) for k ∈ N0 are Cauchy sequences
in a complete metric spaces, i.e. they converge:

lim
j→∞

uk,j =: vk ∈ Xk

and thus for all k ∈ N0

lim
j→∞

fk(uk+1,j) = lim
j→∞

fk(fk+1 ◦ . . . ◦ fk+j)(yk+j+1)

= lim
j→∞

uk,j+1

= vk

= fk( lim
j→∞

uk+1,j)

= fk(vk+1)

In particular v0 ∈ M0 and by continuity of the metric d0 and (3) for
k = j = 0

d0(x, v0) = d0(y0, v0) = lim
j→∞

d0(u0,0, u0,j) ≤ lim sup
j→∞

ε

j∑
m=1

1

rm
= ε
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7. Prove for all x > −1

x− (1 + x) log(1 + x) ≤ − 3x2

2(x+ 3)

Reason: Logarithmic inequality.

Solution:

f(x) := x− (1 + x) log(1 + x)

f ′(x) = 1− log(1 + x)− (1 + x) · 1

1 + x
= − log(1 + x)

f ′′(x) = − 1

1 + x

g(x) := − 3x2

2(x+ 3)

g′(x) = −6x · 2(x+ 3)− 3x2 · 2
4(x+ 3)2

= −3x(x+ 6)

2(x+ 3)2

g′′(x) = −(6x+ 18)(2(x+ 3)2)− (3x2 + 18x)(4(x+ 3))

4(x+ 3)4

= −12(x+ 3)2 − 12x2 − 72x

4(x+ 3)3
= − 27

(x+ 3)3

It is f(0) = f ′(0) = g(0) = g′(0) = 0 and for x > −1

1

g′′(x)
= −(x+ 3)3

27
= − 1

27
· (x+ 3)(x2 + 6x+ 9)

= − 1

27
(x2(x+ 9) + 27x+ 27) < − 1

27
(27x+ 27)

= −1− x =
1

f ′′(x)
< 0

f ′′(x) < g′′(x) < 0

For x ≥ 0 is

f(x) =

∫ x

0

∫ t

0

f ′′(s) ds dt <

∫ x

0

∫ t

0

g′′(s) ds dt = g(x)

which is equally true for −1 < x < 0 with exchanged integral limits.

8. Let (Ω,A,P) be a probability space, B, T, σ positive real numbers, and
n ∈ N. For independently distributed random variables X1, . . . , Xn :
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Ω −→ R with expectation values E(Xk) = 0 and E(X2
k) ≤ σ2, and

boundary ‖Xk‖∞ ≤ B for all k = 1, . . . , n prove

P

(
1

n

n∑
k=1

Xk ≥
√

2σ2T

n
+

2BT

3n

)
≤ e−T .

Reason: Bernstein inequality.

Solution: Set ε :=

√
18Tnσ2 + T 2B2 + TB

3n
=

√
2Tσ2

n
+
T 2B2

9n2
+
TB

3n
.

Assume
√
α + β2 +β >

√
α+ 2β for α, β > 0. Then α+β2 > α+β2 +

2β
√
α which isn’t possible for positive numbers. Thus we have

ε ≤
√

2σ2T

n
+

2TB

3n

Rearrangement of the definition of ε for T is

(3nε− TB)2 = 9n2ε2 − 6nεTB + T 2B2 = 18Tnσ2 + T 2B2

3nε2 = T (6σ2 + 2εB)

T =
3nε2

6σ2 + 2εB

The Markov inequality says that for a monotone increasing function
f : R −→ [0,∞) and a constant a ∈ R

f(a) · P (X ≥ a) ≤ E(f(X))

and in particular for f(a) > 0

P (X ≥ a) ≤ E(f(X))

f(a)
.

Applied to X := n−1
∑n

i=1Xi and f(ε) := etnε for some t > 0 which
will be specified later in the proof, we get

P

(
X ≥

√
2σ2T

n
+

2TB

3n

)
≤ P (X ≥ ε) ≤ e−tnεE

(
n∏
i=1

exp(tXi)

)

The random variables are independent, so we may change the order of
products and expectation values. exp(tXi) is bounded by the integrable
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upper bound etB. Hence we can change the order of summation and
expectation value, too. With X0

i = 1 and E(Xi) = 0 we have

e−tnεE

(
n∏
i=1

exp(tXi)

)
= e−tnε

n∏
i=1

E

(
∞∑
k=0

tk

k!
Xk
i

)

= e−tnε
n∏
i=1

(
1 +

∞∑
k=2

tk

k!
E(Xk

i )

)
(1)

≤ e−tnε
n∏
i=1

(
1 +

∞∑
k=2

tk

k!
σ2Bk−2

)

= e−tnε
(

1 +
σ2

B2

(
etB − tB − 1

))n
(2)

≤ e−tnε · exp

(
nσ2

B2

(
etB − tB − 1

))
(1) E(Xk

i ) ≤ E(X2
i )Bk−2 ≤ σ2Bk−2

(2) (1 + x)n =
n∑
k=0

n!

(n− k)!
· x

k

k!
≤

n∑
k=0

nkxk

k!
≤ enx

Now we choose t :=
1

B
log

(
1 +

εB

σ2

)
> 0 and get

e−tnε · exp

(
nσ2

B2

(
etB − tB − 1

))
= exp

(
−εn
B

log

(
1 +

εB

σ2

)
+
nσ2

B2

(
1 +

εB

σ2
− log

(
1 +

εB

σ2

)
− 1

))
= exp

(
nσ2

B2

(
−εB
σ2

log

(
1 +

εB

σ2

)
+
εB

σ2
− log

(
1 +

εB

σ2

)))
Now we get by the previous Lemma for x :=

εB

σ2
> 0

x− (1 + x) log(1 + x) ≤ − 3x2

2x+ 6

in total

P

(
X ≥

√
2σ2T

n
+

2TB

3n

)
≤ exp

−nσ2

B2
·

3ε2B2

σ4

2εB

σ2
+ 6


= exp

(
− 3ε2n

2εB + 6σ2

)
= e−T
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9. Let P be the set of all primes, p ∈ P, and n ∈ N a positive integer.
ordp(N) denotes the number of primes p which occur as divisor in
{1, 2, . . . , N} counted by multiplicity. E.g. N = 24 = 4! and p = 3
yields in {3 = 31, 6 = 31 ·2, 9 = 32, 12 = 31 ·4, 15 = 31 ·5, 18 = 32 ·2, 21 =
31 · 7, 24 = 31 · 8}

ord3(24) = 1 + 1 + 2 + 1 + 1 + 2 + 1 + 1 = 10

Prove

(a) ordp(n) =
∑
k≥1

⌊
n

pk

⌋
(b) 2 |

(
2n
n

)
and p |

(
2n
n

)
for all n < p ≤ 2n

(c) p ≥ 3 ∧ 2n/3 < p ≤ n =⇒ p -
(

2n
n

)
(d) pr |

(
2n
n

)
=⇒ pr ≤ 2n

(e)
22n−1

n
≤
(

2n
n

)
≤ 22n−1

(f)
∏
p≤n

p < 4n

Reason: Primes.

Solution:

(a) The number of numbers in {1, 2, . . . , n} that are divisible by p
is bn/pc. Among them are bn/p2c many divisible by p2, bn/p3c
divisible by p3 etc.

(b)
(

2n
n

)
=
(

2n−1
n−1

)
+
(

2n−1
n

)
= 2
(

2n−1
n−1

)
=⇒ 2 |

(
2n
n

)
(

2n
n

)
=

2n · . . . · (n+ 1)

1 · . . . · n
and a prime n < p ≤ 2n in the numerator

doesn’t cancel.

(c) From p > 3 we get p2 > 2n for 1 ≤ n ≤ 4 and from p > 2n/3 we
get p2 > 4n2/9 > 20n/9 > 2n for all n ≥ 5. Thus

ordp

(
2n

n

)
= ordp

(
(2n)!

(n!)2

)
= ordp((2n)!)− 2 ordp(n!)

=
∑
k≥1

⌊
2n

pk

⌋
− 2

∑
k≥1

⌊
n

pk

⌋
=

⌊
2n

p

⌋
− 2

⌊
n

p

⌋
= 2− 2 · 1 = 0

which means that p -
(

2n
n

)
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(d) Every term of the sum

ordp

(
2n

n

)
=
∑
k≥1

{⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋}
is either 0 or 1 because for all real numbers x it is b2xc − 2bxc ∈
{0, 1}. Thus b2n/pkc = 0 for

k > rp :=
⌊
logp(2n)

⌋
implies ordp

(
2n
n

)
≤ rp, i.e. pr ≤ prp ≤ 2n.

(e)

(1 + 1)2n−1 =

(
2n− 1

0

)
+ . . .+

(
2n− 1

n− 1

)
+

(
2n− 1

n

)
︸ ︷︷ ︸

≤(2n
n )=22n−1

+ . . .+

(
2n− 1

2n− 1

)

and

(
2n− 1

n− 1

)
=

(
2n− 1

n

)
≥ 22n−1

2n
, i.e.

(
2n

n

)
= 2

(
2n− 1

n

)
≥ 22n−1

n
.

(f) Set P (n) :=
∏

p≤n p. The statement is obviously true for n = 1, 2,

so we may assume that P (k) < 4k for all k < n and n ≥ 3. If n is
even, then by induction hypothesis P (n) = P (2m) = P (2m−1) =
P (n− 1) < 4n−1 < 4n. So let n = 2m− 1. we have seen that

∀ m < p ≤ 2m : 2 · p |
(

2m

m

)
⇒ 2

( ∏
m<p≤2m

p

)
|
(

2m

m

)
≤ 22m−1

=⇒
∏

m<p≤2m

p ≤ 22m−2 = 4m−1

=⇒ P (n) = P (2m− 1) = P (m) ·
∏

m<p<2m

p < 4m · 4m−1 = 4n

10. Let K be compact and C(K) := {f : K → R or C | f is continuous.
A n−dimensional subspace M ⊆ C(K) is called Haar space, if all
f ∈ M − {0} have at most n − 1 zeros. Linear independent functions
S := {ϕ1, . . . , ϕn} ⊆ C(K) are called a Chebyshev- or Haar-system,
if span(S) is a Haar space. We denote the (compact) unit circle T :=
{e2πit | t ∈ [0, 1)}. Let K ⊆ R be compact or K = T , f ∈ C(K).

We call a point ξ ∈ K with f(ξ) = 0 a simple zero of f if ξ is either on
the boundary of K or f changes sign in ξ. If f(ξ − t)f(ξ + t) > 0 in a
neighborhood of ξ, then we speak of a double zero.
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(a) A subspace M ⊆ C(K) with dimM = n is a Haar space if and
only if each f ∈M −{0} that has j ∈ N0 simple zeros and k ∈ N0

double zeros holds
j + 2k < n.

So each element f ∈M − {0} has at most n− 1 different zeros.

(b) The space of all real-valued trigonometric polynomials on [0, 1) of
degree at most n is a Haar space of dimension 2n+ 1.

(c) Let n ∈ N0, p ∈ Tn, and x ∈ T. Then

|p′(x)| ≤ 2πn
√
‖p‖2

∞ − |p(x)|2.

Remark: Consider the linear differential operator D(p) = p′ on
Tn. From |D(sin(2πnx))| = |2πn cos(2πnx)| we conclude that

2πn ≤ ‖D‖ = sup
‖p‖∞≤1

‖p′‖∞ = sup
‖p‖∞=1

sup
x∈T
|p′(x)| <∞

because Tn is finite-dimensional.

Reason: Szegö’s inequality.

Solution:

(a) We only have to show j+ 2k < n holds for f 6= 0 in a Haar space.
Assume ξ1, . . . , ξj ∈ K are the simple zeros of f and η1, . . . , ηk ∈ K
the double zeros, and that

j + 2k ≥ n

Set A0(f) := {ξ1, . . . , ξj, η1, . . . , ηk}. Then #A0(f) = j+k ≤ n−1
by definition of a Haar space. In particular k ≥ 1. We choose an
interval [ηi − δi, ηi + δi] ⊆ K with δi > 0 around each double zero
of f , such that no further zeros are contained, and set

ci := sgn f(ηi − δi) = sgn f(ηi + δi)

C := min
1≤i≤k

{|f(ηi − δi)| , |f(ηi + δi)|}

We construct an interpolation function q ∈M by adding arbitrary
points θ1, . . . , θn−j−k ∈ K − A0(f) such that

q(ηi) = ci (1 ≤ i ≤ k), q(ξi) = 0 (1 ≤ i ≤ j), q(θi) = 0 (1 ≤ i ≤ n−j−k).
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The functions fα := f −αq ∈M for 0 < α <
C

‖q‖∞
have function

values

fα(ξi) = 0 (1 ≤ i ≤ j), fα(ηi) = −αci 6= 0 (1 ≤ i ≤ k),

and sign changes

ci = sgn fα(ηi − δi) = − sgn fα(ηi) = sgn fα(ηi + δi).

Thus we have two zeros of fα in each interval [ηi− δi, ηi + δi], and
fα has at least j+ 2k ≥ n zeros, contradicting the Haar condition
for fα.

(b) Set z := e2πix ∈ C. Each trigonometric polynomial f ∈ Tn − {0}
has the form

f(x) =
n∑

k=−n

cke
2πikx =

n∑
k=−n

ckz
k = z−n

2n+1∑
k=0

ck−nz
k

with coefficient vector (c−n, . . . , cn) 6= 0. The last sum is a poly-
nomial q 6= 0 of degree 2n + 1. It has at most 2n complex zeros
which may be in T. Hence f(x) has at most 2n zeros in [0, 1).

(c) Set q(x) :=
p(x)

‖p‖∞
. Then for all ‖q‖∞ = 1

|p′(x)| ≤ 2πn
√
‖p‖2

∞ − |p(x)|2 ⇐⇒ |q′(x)| ≤ 2πn
√

1− |q(x)|2.

We will first show that there are no p ∈ Tn, x0 ∈ T such that

‖p‖∞ < 1 , |p′(x0)| = 2πn
√

1− |p(x0)|2

Assume there is. We may assume w.l.o.g. that the condition holds
at x0 = 0, for otherwise, we shift the periodic function, and we
assume p′(x0) = p′(0) ≥ 0 by choice of sign.

We choose an α ∈
(
− 1

4n
,

1

4n

)
with p(0) = sin(2πnα) which is

possible since |p(0)| ≤ ‖p‖∞ < 1.

Now define q(x) := sin(2πn(x+α))− p(x) ∈ Tn. If q(x) ≡ 0, then
1 > ‖p‖∞ = ‖ sin(2πn(x + α))‖∞ = 1 which is a contradiction.
Hence q(x) 6= 0.

q(0) = q′(0) = 2πn cos(2πnα)− p′(0)

= 2πn cos(2πnα)− 2πn
√

1− |p(0)|2 = 0
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i.e. we have a double zero at x = 0. The points

xk := α +
2k + 1

4n
, 0 ≤ k ≤ 2n− 1

are pairwise distinct in (0, 1). These points are extreme values of
q(x)− p(x)) = sin(2πn(x− α)), so for 0 ≤ k ≤ 2n− 1

sgn(q(xk)− p(xk)) = sgn
(

sin
(π

2
· (2k + 1)

))
= (−1)k

Since |p(xk)| < 1, we have sgn(q(xk)− p(xk)) = sgn(q(xk)) which
by the mean value theorem means that q(x) ∈ Tn−{0} has at least
2n−1 zeros in (0, 1), which together with the double zero at x = 0
gives 2n+ 1 zeros counted by multiplicities, and contradicting the
Haar condition. We could also conclude by the previous part that

2n− 1 + 2 · 1 = 2n+ 1 < 2n+ 1

which is also a contradiction.

Thus we have proven, that for all p ∈ Tn−{0} that for all x ∈ [0, 1)

‖p‖∞ ≥ 1 ∨ |p′(x)| 6= 2πn
√

1− |p(x)|2

Let p ∈ Tn − {0} and λ ∈
[
0,

1

‖p‖∞

)
⊆ [0, 1), so ‖λp‖∞ < 1. Let

f(λ, x) := |λp′(x)| − 2πn
√

1− |λp(x)|2 6= 0

because λp ∈ Tn. By continuity of f(·, x), and f(0, x) = −2πn < 0
we get from the intermediate value theorem that f(λ, x) < 0 for

all λ ∈
[
0,

1

‖p‖∞

)
and

lim
λ→‖p‖−1

∞

f(λ, x) ≤ 0

i.e. ∣∣∣∣ p′(x)

‖p‖∞

∣∣∣∣ ≤ 2πn

√
1−

∣∣∣∣ p(x)

‖p‖∞

∣∣∣∣2
what had to be shown.
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11. (HS-1) Let S be a set of real numbers which is closed under multiplica-
tion (that is, if a and b are in S, then so is ab). Let T and U be disjoint
subsets of S whose union is S. Given that the product of any three
(not necessarily distinct) elements of T is in T and that the product
of any three elements of U is in U , show that at least one of the two
subsets T, U is closed under multiplication.

Reason: Logic.

Solution: Suppose on the contrary that there exist t1, t2 ∈ T with
t1t2 ∈ U and u1, u2 ∈ U with u1u2 ∈ T. Then (t1t2)u1u2 ∈ U while
t1t2(u1u2) ∈ T, a contradiction.

12. (HS-2) Suppose we have a necklace of n beads. Each bead is labeled
with an integer and the sum of all these labels is n−1. Prove that we can
cut the necklace to form a string whose consecutive labels x1, x2, . . . , xn
satisfy

k∑
i=1

xi ≤ k − 1 (k = 1, . . . , n).

Reason: Cycles.

Solution: Let Sk = x1 + . . . + xk −
k(n− 1)

n
, so that Sn = S0 = 0.

These form a cyclic sequence that doesn’t change when you rotate the
necklace, except that the entire sequence gets translated by a constant.
In particular, it makes sense to choose xi for which Si is maximal and
make that one xn; this way Si ≤ 0 for all i, and thus x1 + . . . + xi ≤
i · n− 1

n
. However, the right side may be replaced by i− 1 because the

left side is an integer.

13. (HS-3) Let d := d1d2 . . . d9 be a number with not necessarily distinct
nine decimal digits. A number e := e1e2 . . . e9 is such that each of
the nine digit numbers formed by replacing just one of the digits dj
by the corresponding digit ej is divisible by 7 for all 1 ≤ j ≤ 9. A
number f := f1f2 . . . f9 is formed the same way by starting with e, i.e.
each of the nine numbers formed by replacing a ek by fk is divisible by
7. Example: If d = 20210901 then e6 ∈ {0, 7} since 7 | 20210001 and
7 | 20210701 . Show that, for each j, dj − fj is divisible by 7.

Reason: Numbers.

Solution: We are given that for all 1 ≤ j ≤ 9

(ej − dj)109−j + d ≡ 0 ≡ (fj − ej)109−j + e mod 7 (∗)
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Thus
∑9

j=1(ej−dj)109−j +d = e−d+9d ≡ e+d ≡ 0 mod 7. Now add
the first and second relation from (∗) for any particular value j and get

0 ≡ (fj − dj)109−j + e+ d ≡ (fj − dj)109−j mod 7

Because 7 is prime and 7 - 109−j this implies 7 | (dj − fj).

14. (HS-4) An ellipse, whose semi-axes have lengths a and b, rolls without
slipping on the curve y = c sin(x/a). How are a, b, c related, given that
the ellipse completes one revolution when it traverses one period of the
curve?

Reason: Analytical geometry.

Solution: Without slipping means that the perimeter of the ellipse
equals the length of one period of the sine curve, which translates to
the integral equation∫ 2π

0

√
(−a sin (θ))2 + (b cos (θ))2 dθ =

∫ 2πa

0

√
1 +

c

a
cos
(x
a

)
dx

Let θ =
x

a
in the second integral, 1 = sin2 θ + cos2 θ, then∫ 2π

0

√
a2 sin2 (θ) + b2 cos2 (θ) dθ =

∫ 2π

0

√
a2 sin2 θ + (a2 + c2) cos2 θ dθ

Since the left side is an increasing function in b, and the right side
doesn’t explicitly depend on b, we must have equality if and only if
b2 = a2 + c2.

15. (HS-5) For a partition π of N := {1, 2, . . . , 9}, let π(x) be the number
of elements in the part containing x. Prove that for any two partitions
π1 and π2, there are two distinct numbers x and y in N such that
πj(x) = πj(y) for j = 1, 2.

Reason: Sets.

Solution: For a given partition π1, no more than three different values
of π1(x) are possible, since four would require one part each of size at
least 1, 2, 3, 4, and that’s already more than 9 elements. If no such x, y
exist, each pair (π1(x), π2(x)) occurs for at most one element of x, since
there are only 3 · 3 possible pairs, and each must occur exactly once.
In particular, each value of π1(x) must occur 3 times. However, any
given value of π1(x) occurs C · π(x) times, where C is the number of
distinct partitions of that size. Thus π1(x) can occur 3 times only if it
equals 1 or 3, but we have three distinct values for which it occurs, a
contradiction.
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5 August 2021

1. Let (X, ρ) be a metric space, and suppose that there exists a sequence
(fi)i of real-valued continuous functions on X with the property that
a Cauchy sequence (xn)n is convergent whenever each of the sequences
(fi(xn))i is bounded. Then X can be remetrized (with equivalent met-
rics) so as to be complete.

Reason: Metric spaces.

Solution: Define a new distance function in X by

σ(x, y) = ρ(x, y) +
∞∑
i=1

1

2i
min{1, |fi(x)− fi(y)|}

which is a metric because the triangle axiom is satisfied by each term.
The other axioms are obvious.

For any ε > 0 and x ∈ X there is an integer N such that 2−N < ε and
a positive number δ < ε such that

ρ(x, y) < δ =⇒ |fi(x)− fi(y)| < ε (i = 1, 2, . . . , N)

If ρ(x, y) < δ, then

σ(x, y) < ε+
N∑
i=1

1

2i
min{1, |fi(x)− fi(y)|}+

1

2N
< 3ε.

Therefore σ(x, xn) → 0 whenever ρ(x, xn) → 0. The converse follows
from the inequality ρ(x, y) ≤ σ(x, y). Thus σ and ρ are equivalent
metrics.

To show that (X, σ) is complete, let (xn)n be a Cauchy sequence relative
to σ. Then for any natural number k there is a natural number N such
that σ(xn, xm) < 2−k for all n,m ≥ N. For all n,m ≥ N, we have

1 > 2kσ(xn, xm) ≥ min{1, |fk(xn)− fk(xm)|},

and therefore |fk(xn)−fk(xm)| < 1. LetM(k) := max{|fk(x1)|, . . . , |fk(xN)|}.

|fk(xn)| = |fk(xn)− fk(xN) + fk(xN)|
≤ |fk(xn)− fk(xN)|+ |fk(xN)|
< 1 +M(k)

and the sequence (fk(xn))n is bounded, for each k. Since ρ(x, y) ≤
σ(x, y), the sequence (xn)n is also a Cauchy sequence relative to ρ, and
by hypothesis, convergent.
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2. Let X = C([0, 1]) be the topological space of real-valued continuous
functions,

ρ(f, g) := supx∈[0,1] |f(x)− g(x)|

the uniform metric induced by the L∞ norm,

σ(f, g) :=

∫ 1

0

|f(x)− g(x)| dx

the L1 induced metric, and for n ∈ N

En := {f ∈ X | ∃x ∈ [0, 1− 1/n] ∀h ∈ (0, 1− x) : |f(x+ h)− f(x)| ≤ nh} .

Show that

(a) (X, ρ) is complete.

(b) (X, ρ) 6∼= (X, σ) is not complete.

(c) En ⊆ (X, ρ) is closed.

Reason: Topology.

Solution:

(a) ρ is called uniform metric, because convergence in this metric im-
plies uniform convergence. Let (fn) ⊆ (X, ρ) be a Cauchy se-
quence, say ρ(fi, fj) < ε for all i, j > N(ε). Then

|fi(x)− fj(x)| < ε for all i, j > N(ε) and x ∈ [0, 1].

Hence (fn(x)) ⊆ R is a Cauchy sequence for all x ∈ [a, b], and
therefore converging to a limit f(x). Letting j → ∞ we see that
|fi(x) − f(x)| < ε for all i > N(ε) and all x ∈ [0, 1]. Thus (fi)
converges uniformly on [0, 1]. Let x0 ∈ [0, 1] and ρ(fM , f) < ε/3.
Since fM is continuous at x0, there is a δ > 0 such that

|fM(x)− fM(x0)| < ε/3 for all |x− x0| < δ.

Hence

|f(x)− f(x0)| ≤ |f(x)− fM(x)|+ |fM(x)− fM(x0)|+ |fM(x0)− f(x0)|
≤ ρ(f, fM) + ε/3 + ρ(fM , f) < ε,

i.e. f(x) is continuous at any x0 ∈ [0, 1] and fn → f in C. This
shows that (X, ρ) is complete.
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(b) Consider fn(x) := max{1− nx, 0} and let f ≡ 0. Then we get for
n > 1

σ(fn, f) =

∫ 1

0

|max{1−nx, 0}| dx =

∫ 1/n

0

|1−nx| dx =
1

n
− n

2n2
=

1

2n

whereas ρ(fn, f) = 1. Thus fn → f in (X, σ) but not in (X, ρ),
hence these spaces are not homeomorphic.

To see that (X, σ) is not complete, let

fn(x) :=

{
min

{
1 , 1

2
− n

(
x− 1

2

)}
on
[
0, 1

2

]
max

{
0 , 1

2
− n

(
x− 1

2

)}
on
[

1
2
, 1
]

σ(fn − fm) =
1

4
·
∣∣∣∣ 1n − 1

m

∣∣∣∣
and (fn) is a Cauchy sequence. Suppose σ(fn, f) → 0 as n → ∞
for some f ∈ C([0, 1]). Then

σ(fn, f) =

∫ 1

0

|fn(x)− f(x)| dx

≥
∫ 1

2
− 1

2n

0

|fn(x)− f(x)| dx+

∫ 1

1
2

+ 1
2n

|fn(x)− f(x)| dx

≥
∫ 1

2
− 1

2n

0

|1− f(x)| dx+

∫ 1

1
2

+ 1
2n

|f(x)| dx
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Letting n→∞ it follows that∫ 1
2

0

|1− f(x)| dx =

∫ 1

1
2

|f(x)| dx = 0.

Since f(x) is continuous, we must have f(x) = 1 on [0, 1/2] and
f(x) = 0 on [1/2, 1], which is impossible. Therefore (X, σ) cannot
be complete.

(c) Let (fk) ⊆ En be a sequence that converges to f ∈ (X, ρ). This is
possible because (X, ρ) ⊇ En is complete. Be definition of En we
have a corresponding sequence (xk) ⊆ [0, 1− (1/n)] and

|fk(xk + h)− fk(xk)| ≤ nh for all 0 < h < 1− xk .

We may assume also that limk→∞ xk = x ∈ [0, 1− (1/n)], for some
suitable x. This condition can be achieved by choosing an appro-
priate subsequence of (fk) and because [0, 1 − (1/n)] is compact.
If 0 < h < 1 − x, the inequality 0 < h < 1 − xk holds for all
sufficiently large k, and then

|f(x+ h)− f(x)| ≤ |f(x+ h)− f(xk + h)|+ |f(xk + h)− fk(xk + h)|
+ |fk(xk + h)− fk(xk)|+ |fk(xk)− f(xk)|
+ |f(xk)− f(x)|
≤ |f(x+ h)− f(xk + h)|+ ρ(f, fk) + nh+ ρ(fk, f)

+ |f(xk)− f(x)|

Letting k →∞, and using the fact that f is continuous at x and
x+ h, it follows that

|f(x+ h)− f(x)| ≤ nh for all 0 < h < 1− x.

Therefore f ∈ En and En is closed.

3. Show that the set of real algebraic numbers is infinite, and denumer-
able.

Reason: Countability.

Solution: Let us define the weight of a polynomial f(x) =
∑n

i=0 aix
i

to be the number n +
∑n

i=0 |ai|. There are only a finite number of
polynomials having a given weight. Arrange these in some order, say
lexicographically (first in order of n, then in order of a0, and so on).
Every non-constant polynomial has a weight at least equal to 2. Taking
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the polynomials of weight 2 in order, then those of weight 3, and so
on, we obtain a sequence f1, f2, f3, . . . in which every polynomial has
at most a finite number of real zeros. Number the zeros of f1 in or-
der, then those of f2, and so on, passing over any that have already
been numbered. In this way we obtain a definite enumeration of all
real algebraic numbers. The sequence is infinite because it includes all
rational numbers.

4. A topology T on a vector space L over a non-discrete topological field
K defines a topological vector space, i.e. addition and scalar mul-
tiplication are continuous, if and only if T is translation-invariant
(all mappings x 7→ x + x0 are homeomorphisms) and possesses a
0−neighborhood base B with the following properties:

(a) For each V ∈ B, there exists U ∈ B such that U + U ⊆ V.

(b) Every V ∈ B is radial (i.e. there exists a λ0 ∈ K such that
whenever |λ| ≥ |λ0| we have F ⊆ λV for each finite subset F ⊆ L)
and circled (λV ⊆ V whenever |λ| ≤ 1).

(c) There exists λ ∈ K, 0 < |λ| < 1, such that V ∈ B implies λV ∈ B.

If K is an Archimedean valuated field, e.g. K ∈ {R,C}, then the last
condition is dispensable.

Reason: Topological vector spaces.

Solution: First let (L, T ) be a topological vector space. We note
that for each x0 ∈ L and each λ0 ∈ K − {0}, the mapping x 7−→
λ0x + x0 is a homeomorphism of L onto itself. It is clearly onto L
and, by continuity of scalar multiplication and addition, continuous
with continuous inverse y 7−→ λ−1

0 (y − x0). Given a 0−neighborhood
W in L, there exists a 0−neighborhood U and a real number ε > 0
such that λU ⊆ W whenever |λ| < ε since scalar multiplication is
continuous; hence since K is non-discrete, V := ∪{λU | |λ| < ε} is a
0−neighborhood which is contained in W, and obviously circled. This
the family B of all circled 0−neighborhoods in L is a base at 0. The
continuity at λ = 0 of (λ, x0) −→ λx0 for each x0 ∈ L implies that
every V ∈ B is radial. It is obvious from continuity of addition that B
satisfies the first condition. Given V ∈ B, and since K is non-discrete,
there is a λ ∈ K, 0 < |λ| < 1, such that λV is a 0−neighborhood by our
initial statement, and which is circled. Again by our initial statement,
we observe that the topology in translation-invariant.

Conversely let T be a translation-invariant topology on L possessing a
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0−neighborhood base B with the three properties as stated. We need
to show continuity of addition and scalar multiplication. It is clear
that {x0 + V |V ∈ B} is a neighborhood base of x0 ∈ L, hence if
V ∈ B is given, and U ∈ B can be selected such that U + U ⊆ V,
then x − x0, y − y0 ∈ U implies that x + y ∈ x0 + y0 + V, so addition
is continuous. Now let λ0 ∈ K, x0 ∈ L be any fixed points. If V ∈ B
is given, then there is a U ∈ B such that U + U ⊆ V. By radiality of
U, there is a real number ε > 0 such that (λ − λ0)x0 ∈ U whenever
|λ− λ0| < ε. Let µ ∈ K satisfy the third condition. Then there exists
a natural number n ∈ N such that |µ−n| = ∞µ|−n > |λ0| + ε. Set
W := µnU ∈ B. Now since U is circled, the relations x − x0 ∈ W and
|λ− λ0| < ε imply λ(x− x0) ∈ U, and hence with

λx = λ0x0 + (λ− λ0)x0 + λ(x− x0)

that λx ∈ λ0x0 + U + U ⊆ λ0x0 + V, i.e. scalar multiplication is
continuous.

Finally, if K is an Archimedean valuated field, then |2| > 1 for 2 =
1 + 1 ∈ K and thus |2n| = |2|n > λ0 + ε for a suitable n ∈ N. By
repeated application of the second condition, we can select a W1 ∈ B
such that

2nW1 ⊆ W1 + . . .+W1 ⊆ U

Since W1 and hence 2nW1 are circled, W1 can be substituted for W in
the preceding proof, so the third condition is dispensable in this case.

5. Let L
µ−→M be locally convex topological vector spaces, P a family of

semi-norms (‖αx‖p = |α| · ‖y‖p and ‖x+y‖p ≤ ‖x‖p+‖y‖p) generating
the topology of L and µ algebraically homomorph, i.e. linear. Then
µ is continuous if and only if for each continuous semi-norm q on M,
there exists a finite subset {pj | j = 1, . . . , n} ⊆ P and a number c > 0
such that ‖µ(x)‖q < c · supj pj(x) for all x ∈ L.

Reason: Continuity of Linear Maps.

Solution: Necessity. Let V be the 0−neighborhood {y | ‖y‖q < 1},
where q is a given continuous semi-norm on M. Since µ is continu-
ous and P generates the topology of L, there exist 0−neighborhoods
Uj = {x | ‖x‖pj < εj} where εj > 0 and pj ∈ P for j = 1, . . . , n ,
such that µ

(
∩nj=1Uj

)
⊆ V. Hence, letting ε := min{ε1, . . . , εn}, the

relation sup{p1(x), . . . , pn(x)} < ε implies µ(x) ∈ V, thus ‖µ(x)‖q <
ε−1 sup{p1(x), . . . , pn(x)} for all x ∈ L.

Sufficiency. If V is a given convex circled 0−neighborhood in M, its
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gauge function q : x 7−→ ‖q(x)‖ = inf{λ > 0 |x ∈ λM} is a contin-
uous semi-norm. Thus if ‖µ(x)‖q < c · sup{p1(x), . . . , pn(x)}, where
c > 0 and pj ∈ P for j = 1, . . . , n , it follows that µ(U) ⊆ V for the
0−neighborhood U = {x | cpj(x) < 1 , j = 1, . . . , n} in L.

An important corollary is:

If (L, ‖.‖L)
µ−→ (M, ‖.‖M) is a linear map between normed spaces, i.e.

a linear operator, then µ is continuous if and only if µ is bounded:
‖µ(x)‖M < c‖x‖L for some c > 0 and all x ∈ L.

6. Let Fq be a finite field of characteristic p. Show that it’s multiplicative
group F∗q = Fq − {0} is cyclic.

Reason: Finite fields.

Solution: If n ∈ N and ϕ denotes the Euler ϕ-function, then

n =
∑
d |n

ϕ(d).

If d |n, let Cd be the unique subgroup of Zn of order d, and let Φ(d)
be the set of generators of Cd. Since all elements of Zn generate one of
the Cd, the group Zn is the disjoint union of the Φ(d) and we have

n = card(Zn) =
∑
d |n

card(Φ(d)) =
∑
d |n

ϕ(d).

Let H be any finite group of order n. Suppose that, for all divisors d
of n, the set of x ∈ H such that xd = 1 has at most d elements. Then
H is cyclic.

Let d |n and x ∈ H of order d. Then all elements y ∈ H with yd = 1 are
at most d many by the hypothesis. They form a group that contains
x, hence

〈x〉 =
{
y ∈ H | yd = 1

} ∼= Cd

In particular, all elements of H of order d are generators of 〈x〉 and
these are in number ϕ(d). Hence, the number of elements of H of order
d is 0 or ϕ(d). If it were zero for a value of d, the formula n =

∑
d |n ϕ(d)

would show that the number of elements H is less that n, contrary to
hypothesis. In particular, there exists an element x ∈ H of order n and
H = 〈x〉, i.e. H is a cyclic group.

Finally, we set H = F∗q and n = q− 1. The polynomial Xd− 1 ∈ Fq[X]
has at most d solutions in Fq, so we can apply what we just have proven
and conclude that H = F∗q is cyclic.
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7. Let Fq be a finite field of characteristic p and fα ∈ Fq[X1, . . . , Xn]
polynomials such that

∑
α deg fα < n, and V ⊆ Fnq be the set of their

common zeros. Then
p | card(V )

Reason: Polynomials over finite fields.

Solution: We first observe that for an integer n ≥ 0

Sn(X) :=
∑
x∈Fq

xn =

{
−1 if n ≥ 1 ∧ (q − 1) |n
0 otherwise

with the convention 00 = 1. The case n = 0 is obvious since q ≡ 0 (p)
so we may assume n ≥ 1. The multiplicative group of Fq is cyclic
of order q − 1, so in case n is divisible by q − 1, we have Sn(X) =
0n +

∑
x 6=0 (xq−1)

e
= 0 +

∑
x 6=0 1e = q − 1 = −1 for some e ∈ N. Next

assume (q − 1) - n. Then there exists a y ∈ Fq − {0} with yn 6= 1 and

Sn(X) =
∑
x∈Fq

xn =
∑
x 6=0

xn =
∑
x 6=0

ynxn = yn
∑
x6=0

xn = ynSn(X)

=⇒ (1− yn)Sn(X) = 0

=⇒ Sn(X) = 0

Let P (X) :=
∏

α(1 − fα)q−1 and x ∈ Fnq . If x ∈ V then all fα(x) = 0
and P (x) = 1; if x 6∈ V, we have one of the fα with fα 6= 0 but f q−1

α = 1,
hence P (x) = 0. Thus P (X) is the characteristic function of V. If, for
every polynomial f, we put S(f) :=

∑
x∈Fnq

f(x), we have

card(V ) ≡ S(P ) (p)

and we have to show that S(P ) = 0. The hypothesis
∑

α deg fα < n
implies that degP < n(q − 1). Thus P (X) is a linear combination of
monomials Xv = Xu1

1 · · ·Xun
n with

∑
uj < n(q − 1). This means that

at least one 0 ≤ uj < q − 1 and S(X
uj
j ) = 0 by our initial observation.

Now

S(Xv) =
∑
x∈Fnq

Xv(x) =
∑
x∈Fnq

xu11 · · ·xunn = 0 =⇒ S(P ) = 0

8. A linear fractional transformation S : C∞ −→ C∞ defined by S(z) =
az + b

cz + d
is called a Möbius transformation if ad− bc 6= 0. Here S(∞) =
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a/c and S(−d/c) =∞. Show that Möbius transformations form a group
by composition, and that there is a unique Möbius transformation S(z)
which takes (z1, z2, z3) to (1, 0,∞). Which one?

Reason: Möbius transformation.

Solution: Associativity is guaranteed by taking composition as multi-
plication, multiplicative closure and the identity element are obvious,
so only the existence of an inverse has to be shown. Set

S−1(z) :=
dz − b
−cz + a

S(S−1(z)) =
a
dz − b
−cz + a

+ b

c
dz − b
−cz + a

+ d

=
adz − ab− bcz + ab

cdz − cb− cdz + ad
= z

S−1(S(z)) =
d
az + b

cz + d
− b

−caz + b

cz + d
+ a

=
adz + bd− bcz − bd
−acz − bc+ acz + ad

= z

Let S 6≡ 1 and S(z) = z. Then 0 = cz2 +(d−a)z− b which has at most
two different solutions. If a, b, c ∈ C∞ are three different points such
that S(a) = T (a), S(b) = T (b), S(c) = T (c) for two Möbius transfor-
mations S, T. Then T−1 ◦ S has three fixed points, i.e. T−1S ≡ 1 and
S = T. Hence, a Möbius map is uniquely determined by its action on
any three distinct given points in C∞. Set

S(z) :=



z − z2

z − z3

z1 − z2

z1 − z3

if z1, z2, z3 ∈ C

z − z2

z − z3

if z1 =∞

z1 − z3

z − z3

if z2 =∞

z − z2

z1 − z2

if z3 =∞

Then S(z1) = 1 , S(z2) = 0 , S(z3) =∞.
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9. Let G be a connected open set and let f : G −→ C be an analytic
function. Show that the following statements are equivalent:

(a) f ≡ 0

(b) There is a point a ∈ G such that f (n)(a) = 0 for each n ≥ 0.

(c) {z ∈ G | f(z) = 0} has a limit point in G.

Reason: Function theory.

Solution: It is sufficient to show that (c)⇒ (b) and (b)⇒ (a).

Let a ∈ G be a limit point of Z := {z ∈ G | f(z) = 0}, and let R > 0
be such that B(a;R) ⊆ G. Since f is continuous, it follows f(a) = 0.
Suppose there is an integer n ≥ 1 such that f (a) = f

′
(a) = · · · =

f (n−1)(a) = 0 and f (n)(a) 6= 0. Expanding f in power series about a
gives that

f(z) =
∞∑
k=n

ak(z − a)k

for |z − a| < R. If

g(z) :=
∞∑
k=n

ak(z − a)k−n

then g is analytic in B(a;R) , f(z) = (z − a)ng(z), and g(a) = an 6= 0.
Since g is continuous in B(a;R) we can find an 0 < r < R, such that
g(z) 6= 0 for |z − a| < r. But since a is a limit point of Z there is a
point b ∈ Z with 0 < |b − a| < r. This gives 0 = (b − a)ng(b) and so
g(b) = 0, a contradiction. Hence no such integer n can be found, which
proves (b).

Let A := {z ∈ G | f (n)(z) = 0 for all n ≥ 0}. From the hypothesis (b)
we have that A 6= ∅. We will show that A is both open and closed in
G; by connectedness of G it will follow that A = G and so f ≡ 0.
To see that Ais closed, let z ∈ A and let (ak) be a sequence in A
such that z = lim ak . Since f (n) is continuous it follows that f (n)(z) =
lim f (n)(ak) = 0. So z ∈ A and A is closed.
To see thatA is open, let a ∈ A and letR > 0 be such thatB(a;R) ⊆ G.
Then f(z) =

∑
an(z−a)n for |z−a| < R where an = (n!)−1f (n)(a) = 0

for each n ≥ 0. Hence f(z) = 0 for all z ∈ B(a;R) and, consequently,
B(a;R) ⊆ A. Thus A is open and this completes the proof.

10. Suppose f and g are meromorphic in a neighborhood of B(a;R) with
no zeros (Z) or poles (P ) on the circle γ = {z ∈ C | |z − a| = R}. If
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Zf , Zg, Pf , Pg are the numbers of zeros, resp. poles, of f and g inside
γ counted according to their multiplicities and if

|f(z) + g(z)| < |f(z)|+ |g(z)|

on γ, then
Zf − Pf = Zg − Pg .

Reason: Rouché’s theorem.

Solution: From the hypothesis∣∣∣∣ f(z)

g(z) + 1

∣∣∣∣ < ∣∣∣∣f(z)

g(z)

∣∣∣∣+ 1

on γ. If λ := f(z)/g(z) and if λ is a positive real number then this
inequality becomes λ + 1 < λ + 1, a contradiction. Hence the mero-
morphic function f/g maps γ onto Ω := C − [0,∞). If L is a branch
of the logarithm on Ω then L(f(z)(g(z)) is a well-defined primitive for
(f/g) ′(f/g)−1 in a neighborhood of γ. Thus

0 =
1

2πi

∫
γ

(f/g) ′(f/g)−1

=
1

2πi

∫
γ

(
f ′

f
− g ′

g

)
= (Zf − Pf )− (Zg − Pg).

11. (HS-1) A gardener holds a water hose horizontally and wants to water a
bed 6 m away. The water exits the hose at a speed of 8 m/s . Calculate
the minimum height the gardener needs to hold the hose for the water
to reach the bed, the speed at which the water droplets hit the bed,
and the angle at which the water droplets hit the bed.

Reason: Projectile motion.

Solution: It is a uniformly motion, i.e. x0 = vx · t0. We have also an
acceleration towards earth the whole time, i.e.

y0 =
g

2
· t20 =

g

2
·
(
x0

vx

)2

=
9.8

m

s2

2
·

 6 m

8
m

s

2

= 2.76 m
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For the y-component of the velocity we have vy = g · t0 so

v =
√
v2
x + v2

y =

√
v2
x + g2 ·

(
x0

vx

)2

=

√√√√√64
m2

s2
+ 96.04

m2

s4
·

 6 m

8
m

s

2

= 10.86
m

s

Finally we have for the angle

tanα =
vy
vx

=
g · x0

vx
vx

=
g · x0

v2
x

= 9.8
m

s2
· 6 m

64
m2

s2

= 0.91875

which results in α ≈ 42.6◦

12. (HS-2) A faucet delivers a volume flow of V ′ = 6
l

min
. The connected

garden hose has an inner diameter of d1 = 18 mm, the nozzle a cross-
section of d2 = 5 mm. Calculate the mass flow in the garden hose, the
speed of the water in the garden hose, and the speed of the water at
the nozzle. It is observed that the water jet widens after the nozzle.
Why?

Reason: Fluid dynamics.

Solution: Water is an incompressible fluid and has a density of ρ =

1, 000
kg

m3
under standard conditions. We have by hypothesis a flow of

volume

V ′ = 6
l

min
=

6 · 10−3 m3

60 s
= 10−4 m3

s

From m = ρ · V for the mass of incompressible fluids we get

m′ = ρV ′ = 1000
kg

m3
· 10−4 m3

s
= 0.1

kg

s

The cross-section of the hose has a radius r1 = d1/2 = 9 mm = 0.009 m
and so an area of A1 = πr2

1 = 2.545 · 10−4 m2. This results in a velocity
of

v1 =
V ′

A1

=
10−4 m3

s
2.545 · 10−4 m2

= 0.393
m

s
.
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The cross-section of the nozzle is A2 = πr2
2 = π

d2
2

4
= 0.2 · 10−4 m2,

hence the velocity at the nozzle is

v2 =
V ′

A2

=
10−4 m3

s
0.2 · 10−4 m2

= 5
m

s
.

The velocity of the water is slowed down due to friction and air resis-
tance. However, mass and volume stay the same, such that velocity
times cross-section is constant. That is why the beam widens.

13. (HS-3) As a result of the refraction, the light bundle emanating from
the slit S produces two bundles which overlap in the screen area of
width D and appear to arise from two virtual slit images A and B.
Since the two virtual slit images originate from the same slit, the light
emanating from them is coherent and can interfere in the area of over-
lap.

Calculate the wavelength if monochromatic light is used from the quan-
tities given in the sketch and the distance ∆y between two adjacent
interference strips? Assume that the dimensions parallel to the optical
axis can be viewed as large compared to those perpendicular to the
optical axis.

Reason: Optics.

Solution: Let b be the distance between the two virtual slit images
A,B. The intercept theorem yields

b

D
=

x

a− x
=⇒ b =

Dx

a− x
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For a� b we may assume that the beams that run from A and B in di-
rection P on the screen are approximately parallel. For the interference
at the k-th maximum, and small angles, we have

∆sk = b · sinαk = k · λ =⇒ sinαk =
kλ

b
≈ tanαk =

yk
a

By the same arguments we get
(k + 1)λ

b
=
yk+1

a
and thus

λ =
b

a
(yk+1 − yk) =

b

a
·∆y .

14. (HS-4) A galaxy is 42 MLy away and oriented in space, such that its
rotation axis is perpendicular to the line of sight. The α line of hydrogen
is measured to occur at λ1 = 658.003 nm instead of λ0 = 656.28 nm

widened to b = 0.438 nm. Assume
that the main cause of the widening is the rotation of the stars around
the center of the galaxy. Assume further that the different wavelength
is only due to the radial motion of the galaxy compared to our solar
system.

What is the maximal rotational velocity of the observed stars, and what
is the maximal velocity the galaxy is moving and in which direction as
seen from our solar system?

Reason: Astronomy.

Solution: If we consider the rotational velocity v, we have v =
∆λ

λ1

· c
and with ∆λ = 0.5 b

v =
0.219 nm

658.003 nm
· 3 · 108 m

s
= 99778.5

m

s
≈ 100

km

s

The calculation of the galaxy’s relative motion to us is

v =
∆λ

λ1

·c =
λ1 − λ0

λ1

·c =
1.723 nm

656.28 nm
·3·108 m

s
= 787, 076

m

s
≈ 790

km

s
.
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Since λ1 > λ0 the galaxy is moving at around 790
km

s
away from us.

15. (HS-5) The spiral galaxy M81 near Ursa Major can already be viewed
by a small telescope. It has an apparent magnitude of M = 6.9. The
angle to the celestial pole is about 21◦. Is it possible to observe M81
the entire year, if you live in Toronto?

The following diagram shows data-points of light from the cepheid C27
in M81.

Calculate our distance from M81 in lightyears. (Use an average value
of magnitude 22.3 at a pulsation rate of 30 per day and the relation
M = −1.67− 2.54 · log10 p.)

The second diagram is a comparison between M81 and Milky Way. It
shows the radial orbit velocity v of the stars in relation to their distance
r from the galaxy center. Optical wavelengths are hardly to observe
from around 16 kpc on, so radio wavelengths are used.
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Verify that if a celestial body orbits a center of great mass, then we

can calculate the central mass approximately by M =
v2 · r
G

. Show by

choosing two data-points that the rotation curve of M81 is approxi-

mately v ∼ 1√
r

for r = 10 kpc. What does that mean for the mass

distribution in M81 ? Estimate the mass of M81 within the optical
spectrum in units of sun masses.

The rotation curves of M81 and the Milky Way differ a lot for great
distances from the center. What does that mean for the mass distribu-
tion in our Milky Way?

The wavelength of the α-line of hydrogen from the optical center of M81
is measured to be λ1 = 656.38 nm in comparison to λ0 = 656.28 nm.
Can we apply Hubble’s law to M81?

Reason: M81.

Solution:

(a) An observer in the Northern hemisphere can see all stars (or galax-
ies) whose angular distance from the celestial pole is less than its
geographical latitude. Toronto is at 43◦ 39’ 40,86” N, 79◦ 22’
59,11” W, which is significantly greater than 21◦, hence M81 can
be seen at any time of the year.

(b) We read an average of magnitude m = 22.3 at a pulsation rate of
30 per day. With the given relation we calculate M = −5.42. The
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distance is given by

m−M = 5 · log10

(
d

10 pc

)
=⇒ d = 10(m−M)/5 · 10 pc

d = 10(22.3+5.42)/5 · 10 pc = 350, 000 · 10 pc

≈ 10, 798, 258 · 1016 m ≈ 11.4 MLy

(c) FG = FC =⇒ G · m ·M
r2

=
m · v2

r
=⇒M =

v2 · r
G

(d) The diagram gives us two data-points r1 = 10 kpc , v1 = 250 kms−1

and r2 = 20 kpc , v2 = 185 kms−1. Hence

v1

v2

=
250

185
= 1.35 and

√
r2√
r1

=
√

2 = 1.41 =⇒ v ∼ 1√
r
.

This is almost the proportion we have for a single large cen-
tral mass, which in return means that almost the entire mass
of M81 is within 10 kpc of range. The optical limit is the point
r = 16 kpc , v = 210 kms−1.

mM81 =

(
210

km

s

)2

· 16 kpc

6.673 · 10−11
m3

kg s2

=
44, 100 · 106 · 16, 000 · 3.0857 · 1016 m3s−2

6.673 · 10−11
m3

kg s2

= 3.2628 · 1041 kg ≈ 164 · 109 msun

(e) The orbital velocity of the Milky Way is almost constant for large
distances from its center. So there must be considerable (non-
luminous) masses at these distances.

(f) Since the α-line of hydrogen is blue-shifted, λ1 > λ0, Hubble’s law
does not apply. M81 is approaching the Milky Way.
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6 July 2021

1. Suppose that G is a finite group such that for each subgroup H of G
there exists a homomorphism ϕ : G −→ H such that ϕ(h) = h for all
h ∈ H. Show that G is a product of groups of prime order.

Reason: Group Theory.

Solution: We proceed by induction on |G|. The base case |G| = 1 is
trivial (empty product), as are |G| = 2, 3. Suppose that |G| > 3 and
that the statement is true for all smaller groups. Choose a subgroup
H of G of prime order p. Such a subgroup exists by the first Sylow
theorem. By assumption, there is a homomorphism ϕ : H −→ H such
that ϕ(h) = h for all h ∈ H. Let K := kerϕ . By induction hypothesis,
K is a product of groups of prime order. Let σ : G −→ K be a
homomorphism which is constant on K, i.e. σ(k) = k for all k ∈ K ,
which exists by assumption. Now we define

α : G −→ K ×H , α(g) := (σ(g), ϕ(g))

Since σ restricted to K equals the identity, the kernel of α is trivial, i.e.
α is injective and thus |G| = |K| · |H| . But then α is an isomorphism,
K a product of subgroups of prime order by induction hypothesis, and
H was of prime order p.

2. Let G be a finite group that operates on a set X. Then the number of
orbits is

|X/G| = 1

|G|
∑
g∈G

|Xg|

where Xg = {x ∈ X : g.x = x } are the fixed points in X .

Reason: Burnside’s Lemma (Frobenius-Cauchy Lemma).

Solution: Long version.

Gx = { g ∈ G | g.x = x } 6 G is the stabilizer of x.
G(x) = { g.x | g ∈ G } ⊆ X is the orbit of x under G.

Step 1: Stabilizer-Orbit Formula: |G| = |Gx| · |G(x)|

Consider the relation R = { (g, y) ∈ G×X | y = g.x }. For each g ∈ G
there is exactly one y = g.x ∈ X, hence |R| = |G|. On the other hand,
we have for y ∈ G(x), say y = g0.x, exactly |Gx| many elements h ∈ G
with h.x = y, because these are exactly all elements h = g0g with
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g ∈ Gx. In case y /∈ G(x) there is no element (g, y) ∈ R. Therefore

|R| = |G| =
∑
y∈G(x)

|Gx| = |G(x)| · |Gx|

Step 2:
∑
g∈G

|Xg| =
∑
x∈X

|Gx|

This time we use the double count argument on the relation S =
{ (g, x) ∈ G × X | g.x = x }. For a fixed element h ∈ G the set
{ (h, x) |x ∈ Xh } is the set of pairs in S which have h as their first
coordinate. On the other hand we have for a given z ∈ X the set of
pairs in S with second coordinate z the set { (g, z) | g ∈ Gz }. Hence∑

h∈G

|Xh| = |S| =
∑
z∈X

|Gz|

Step 3: |X/G| = 1

|G|
∑
g∈G

|Xg|

We use the stabilizer-orbit formula and sort the summands on the RHS
with equal stabilzers; especially all elements y ∈ G(x) have stabilizers
Gx of equal size:

If g ∈ Gx and y = g0.x ∈ G(x) then g.x = x and thus (g0g.x = g0.x =
y), i.e. (g0gg

−1
0 ).(g0.x) = g0.x = y . If g runs through the stabilizer

Gx, then g0Gxg
−1
0 runs through the stabilizer of y = g0.x . But both

sets are of equal size |Gx|. With the previous steps, especially with
|Gx| = |G|/|G(x)| = |G|, we get∑

g∈G

|Xg| =
∑
x∈X

|Gx| =
∑

A∈X/G

∑
x∈A

|Gx|

=
∑

A∈X/G

|A| · |G|
|A|

=
∑

A∈X/G

|G| = |X/G| · |G|

Note: William Burnside wrote this formula down around 1900. Histori-
ans of mathematics, however, found this formula already from Cauchy
(1845) and Frobenius (1887). Therefore the formula is sometimes re-
ferred to as the Lemma which is not from Burnside.

3. Prove that there is a Lie algebra monomorphism g ↪→ gl(g) if g is a
semisimple Lie algebra. Is this also a necessary condition?

Reason: Adjoint Representation and Center.
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Solution: A semisimple Lie algebra has no Abelian ideals. Its center,
however, is an Abelian ideal. Thus we have

Z(g) = {Z ∈ g | [X,Z] = 0 ∀X ∈ g }

=
⋂
X∈g

ker adX = ker ad = { 0 }

This means that ad : g −→ gl(g) is a monomorphism of Lie algebras
and

g ∼= ad(g) ∼= Der(g) ⊆ gl(g)

The adjoint representation cannot be onto, since the center of gl(g) are
all multiples of the identity matrix.

If we consider the non Abelian two dimensional Lie algebra defined by
[X, Y ] = Y , which is the Borel subalgebra of the simple Lie algebra

sl(2), or the Lie algebra of matrices

[
∗ ∗
0 0

]
, then we have a solvable

and therewith no semisimple Lie algebra which has only a trivial center,
too. Hence the condition of semisimplicity is not necessary.

4. If n > 1 is a square-free natural number, prove for all k > 1∑
d|n

σ(dk−1)ϕ(d) = nk

Remark: ϕ is Euler’s phi-function and σ(m) the sum of divisors of m.

Reason: Number Theory.

Solution: Let n = p1p2 . . . pr > 1 a square-free number. The func-
tion f(m) = σ(mt)ϕ(m) with t ≥ 1 is build of multiplicative func-
tions and as such multiplicative, too. This means for coprime num-
bers a, b we have f(ab) = f(a)f(b). The function F (n) =

∑
d|n f(d) =∑

d|n σ(dk−1)ϕ(d) is also multiplicative:

F (ab) =
∑
d|ab

f(ab) =
∑
d|a

∑
e|b

f(a)f(b) =
∑
d|a

f(a)
∑
e|b

f(b) = F (a)F (b)

Thus it is sufficient to show F (p) = pk since as n is square-free and
F (n) = F (p1 . . . pr) = pk1 . . . p

k
r = nk

F (p) =
∑
d|p

σ(dk−1)ϕ(d) = 1 + σ(pk−1)ϕ(p) = 1 +
pk − 1

p− 1
· (p− 1) = pk
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5. Show that

M := {x ∈ R3 |x1+x2+x3 = 0 , x2
1+2x2

2+x2
3−2x2(x1+x3) = 9 } ⊆ R3

is a manifold, and determine the tangent space TpM and the normal
space NpM at p = (2,−1,−1) ∈M .

Reason: Manifolds.

Solution: We consider the function f : R3 −→ R2 defined byx1

x2

x3

 f−→
[

x1 + x2 + x3

x2
1 + 2x2

2 + x2
3 − 2x2(x1 + x3)− 9

]

such that M = f−1({(0, 0)}). Its Jacobi matrix is

Jxf =

[
1 1 1

2(x1 − x2) 2(2x2 − x1 − x3) 2(x3 − x2)

]
rk Jxf = 1 if x1 − x2 = 2x2 − x1 − x3 = x3 − x2 or x1 = x2 = x3 .
Since f(t, t, t) = (3t,−9) 6= 0, (0, 0) is a regular value of f and M a
submanifold of dimension 3− 1− 1 = 1 .

For p = (2,−1,−1) we have Jpf =

[
1 1 1
6 −6 0

]
, hence TpM = kerDpf =

R ·
[
1 1 −2

]
and NpM = (TpM)⊥ = R ·

1
1
1

 + R ·

 1
−1
0

, which is

the row space of Jpf .

6. Two persons P and Q play the following game:

P starts by selecting exactly one real value for a, b, or c in the equation

x3 + ax2 + bx+ c = 0

Then Q does the same for one of the remaining coefficients, before P
finally chooses the last value. P wins if and only if the equation has
three different real roots. Is there a winning strategy for one of the
players?

Reason: Mean Value Theorem.

Solution: P has the following winning strategy:

P chooses c = 1 in his first move. In case Q sets a value for a, then P
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finally sets b < −a−2 ; whereas in case Q sets a value for b, P finally sets
a < −b− 2 . We now have to show that the equation has three distinct
real roots. Let f(x) = x3 + ax2 + bx + 1 . Since limx→∞ f(x) = +∞
and limx→−∞ f(x) = −∞ there is a real number k > 1 such that

f(k) > 0 , f(0) = 1 , f(−k) < 0 , f(1) = a+ b+ 2 < 0

By the mean value theorem, there have to be roots f(ξj) = 0 with

−k < ξ1 < 0 < ξ2 < 1 < ξ3 < k

7. What are the composition factors of GL(2,F19) ?

Reason: Group Theory.

Solution: We know that

GL(2,F19)/SL(2,F19) ∼= F×19
∼= Z18

∼= Z2 × Z9

Z9 has the composition factor Z3 twice and Z2 is simple. We know
further that

SL(2,F19)/Z(SL(2,F19)) ∼= PSL(2,F19)

which is simple, too. With Iwasawa’s criterion for simplicity, it can
be shown that all groups PSL(m,Fpk) are simple, except of PSL(2,F2)
and PSL(2,F3) .

|PSL(m,Fpk)‖ = d−1q
m(m−1)

2

m∏
j=2

(qj − 1) , d := gcd(m, q− 1) , q = pk

Thus in our case we have |PSL(2,F19)| = 19

2
(192−1) = 3420 . PSL(2,F19)

is the Chevalley group A1(19) . The remaining composition factors are
provided by

Z(SL(2,F19))/{1 } ∼= Z(SL(2,F19)) ∼= Z2

such that we have the following list:

Z/2Z (twice) , Z/3Z (twice) , PSL(2,F19)

8. A group G of order 70 has always a normal subgroup of order 5.

Reason: Group Theory.
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Solution: According to Sylow’s first theorem, there is at least one
subgroup U 6 G of order 5. According to his third theorem the number
s of such subgroups satisfies

s ≡ 1 mod 5 , s | |G| = 70

If s · α = 70 = 5 · 14 and 5 - s, then 5 |α, say α = 5β and so s · β = 14
and s | 14 = 2 · 7. However, 2 ≡ 2 6≡ 1 mod 5, 7 ≡ 2 6≡ 1 mod 5 and
14 ≡ 4 6≡ 1 mod 5, a contradiction except for s = 1. As all gUg−1 are
Sylow 5-subgroups, too, they are already contained in the only one U ,
which means that U is a normal subgroup.

9. Let X, Y, Z be topological spaces, X covering compact (not necessarily
Hausdorff), and Z Hausdorff. Let g : X −→ Y be continuous, and
h : X −→ Z surjective and continuous. Show that the following
statements are equivalent:

(a) g(x) = g(x′) for all x, x′ ∈ X with h(x) = h(x′).

(b) There is a continuous function f : Z −→ Y with g = f ◦ h .
(c) There is a unique continuous function f : Z −→ Y with g = f ◦h .

Reason: Topology.

Solution: (a) =⇒ (b) : Since h is surjective, we have for any z ∈ Z
an element x ∈ X such that z = h(x) = h(x′), hence g(x) = g(x′) by
assumption. Therefore there is a well-defined function f : Z −→ Y
with f(z) := f(h(x)) = g(x) for all z ∈ Z, i.e. g = f ◦ h .

Given a closed set A ⊆ X, means that A is covering compact as X
is, hence h(A) ⊆ Z is covering compact, too, because h is continuous.
Since Z is Hausdorff, h(A) is closed and so is h .

Now let B ⊆ Y be closed. Then g−1(B) = h−1(f−1(B)), i.e. f−1(B)
(∗)
=

h(h−1(f−1(B))) = h(g−1(B)). Since g is continuous and h closed, we
have that f−1(B) is closed, which means f in continuous.

(∗) h is surjective, so h(h−1(M)) = M for all sets M ⊆ Z .
This property is equivalent to surjectivity.

(b) =⇒ (c) : If f1, f2 : Z −→ Y with f1h = g = f2h, then f1 = f2

because surjectivity of h allows us a right cancellation.
This property is equivalent to surjectivity.

(c) =⇒ (a) : Be x, x′ ∈ X with h(x) = h(x′) then g(x) = f(h(x)) =
f(h(x′)) = g(x′) .
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10. Given y′′′ = y′′ + y′ − y . Determine a fundamental system, and solve
the initial value problem y(0) = 1 , y′(0) = 0 , y′′(0) = 3 .

Reason: Differential Equation.

Solution: The characteristic polynomial p

(
d

dx

)
(y) = 0 is given by

p(x) = x3 − x2 − x+ 1 = (x− 1)2(x+ 1) with a double root at c1 = 1

and a simple root at c2 = −1 . With D =
d

dx
we verify

(D − 1)(D − 1)(ex) = (D − 1)(ex − ex) = D(0)− 0 = 0

(D − 1)(D − 1)(xex) = (D − 1)(xex + ex) = (ex + xex)− (xex + ex) = 0

(D + 1)(e−x) = −e−x + e−x = 0

so we get three linear independent solutions and a basis by the funda-
mental system

{ϕ1 = ex , ϕ2 = xex , ϕ3 = e−x }
With the initial values for y =

∑3
k=1 akϕk(x) = a1e

x + a2xe
x + a3e

−x

y(0) = 1 =⇒ a1 + a3 = 0

y′(0) = 0 =⇒ a1 + a2 − a3 = 0

y′′(0) = 3 =⇒ a1 + 2a2 + a3 = 3

which results in (a1, a2, a3) = (0, 1, 1) and y(x) = xex + e−x .

11. (HS-1) Assume we have put a Cartesian coordinate system on France
and got the following positions: Paris (0, 0), Lyon (3,−8) and Marseille
(4,−12). Look up the definitions and calculate the distance between
Lyon and Marseille according to

(a) the Euclidean metric.

(b) the maximum metric.

(c) the French railway metric.

(d) the Manhattan metric.

(e) the discrete metric.

Reason: Internet search for the metrics.

Solution: We have P = (0, 0), L = (3,−8),M = (4,−12).

(a) the Euclidean metric.

|LM | =
√

(4− 3)2 + (−12− (−8))2 =
√

17 ≈ 4.123.
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(b) the maximum metric.

|LM | = max{ |4− 3| , | − 12− (−8)| } = max{ 1, 4 } = 4.

(c) the French railway metric.

Paris isn’t on the direct line between Lyon and Marseille, so
|LM | = |LP | + |PM | =

√
32 + (−8)2 +

√
42 + (−12)2 =

√
73 +√

160 ≈ 21.193.

(d) the Manhattan metric.

|LM | = |4− 3|+ | − 12− (−8)| = 1 + 4 = 5.

(e) the discrete metric.

|LM | = 1.

12. (HS-2) Consider the ellipse in the first quarter of a Cartesian coordinate
system

(x− 2)2

4
+ (y − 1)2 = 1

and rotate it such that the coordinate axes are always tangents to the
ellipse. Which locus describes the center of the ellipse during a full
rotation?

Reason: Geometry.

Solution:
Consider an Ellipse of foci F and F ′ and semi axis a = 2, b = 1. Let M
be a point outside the ellipse. The tangents from M touch the Ellipse
at A and A′. Let E be the symmetric of F with respect to MA and
define E ′ similarly.

Step1. The points F ′, A and E are aligned. Indeed, by the optical
property of the ellipse ∠MAF ′ = ∠FAX = ∠XAE. Similarly, the F ,
A′ and F ′ are also aligned.

Step2. 4FE ′M and 4F ′EM are congruent. Because, EF ′ = EA +
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AF ′ = FA+AF ′ = 2a and similarly, FE ′ = 2a. Moreover, ME = MF
and ME ′ = MF ′.

Step3. ∠AMA′ = ∠F ′ME. Indeed, from the previous step we con-
clude that

∠XME =
1

2
∠EMF =

1

2
∠E ′MF ′ = ∠YMF ′.

Step4. It follows that MA⊥MA′ if and only if ∠EMF ′ = π
2
, and (since

EM = FM ,) this equivalent to

FM2 + F ′M2 = F ′E2 = 4a2 (∗)

But using the parallelogram identity we know that

FM2 + F ′M2 = 2OM2 + 2OF 2 = 2OM2 + 2e2 = 2OM2 + 2(a2 − b2)

Thus, (∗) is equivalent to OM2 = a2 + b2 = 5, which is the desired
conclusion, a segment of circle of radius

√
5 and center (0, 0) between

(2, 1) and (1, 2).

13. (HS-3) Maximize f(x, y, z) = 4x2y2−(x2+y2−z2)2 under the conditions
x+ y + z = c and that x, y, z > 0.

Reason: Heron’s Theorem.

Solution: In case x, y, z are the side lengths of a triangle, we have
f(x, y, z) = c(c− 2x)(c− 2y)(c− 2z) > 0 if we label the longest side z.
Since the geometric mean is less or equal the arithmetic mean, we have

c(c− 2x)(c− 2y)(c− 2z) ≤ c ((c− 2x) + (c− 2y) + (c− 2z))3 = c4

where equality holds if c− 2x = c− 2y = c− 2z, i.e. x = y = z .

The theorem of Heron says that f(x, y, z) = 16F 2 where F is the area
of the triangle with side lengths x, y, z . The triangle with the maximal
area by constant circumference is the equilateral triangle.

Now assume that c > z ≥ x + y > y ≥ x > 0. Then f(x, y, z) ≤ 0
because c, c− 2x, c− 2y > 0, c− 2z = (x+ y)− z ≤ 0. We can achieve
the maximal value 0 by setting z = c/2 such that f(x, y, c/2) = 0. In
order to match the restrictions on x, y, we could set x = y = c/4. The
solution, however, isn’t unique since e.g. x = c/6, y = c/3 match the
requirements, too.
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14. (HS-4) Let 4ABC be a triangle and s a straight which intersects all
three sides (or their prolongations), say X ∈ BC , Y ∈ CA , Z ∈ AB
are the intersection points. Prove

AZ ·BX · CY = AY ·BZ · CX

Reason: Menelaus’s Theorem.

Solution: Let a, b, c be the perpendiculars in A,B,C resp. on s. From
the intercept theorem we get

AZ : BZ = a : b , BX : CX = b : c , CY : AY = c : a

Multiplication yields

AZ

BZ
· BX
CX
· CY
AY

=
a

b
· b
c
· c
a

= 1

15. (HS-5) Otto von Guericke, who invented the air pump, led an experi-
ment in Berlin in 1654. Two groups of eight horses tried in vain to pull
apart two bronze hemispheres between which a vacuum was created.
Assume that the radius R of the hemispheres is so thin that we can
neglect the difference between inner and outer radius.

Show that the force required to tear apart the hemispheres is F =
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πR2 ·∆p where ∆p is the difference of air pressure within and outside
the hemispheres. Next assume R = 30 cm, an inner pressure of 0.1 bar
and an outer pressure of 1.013 bar Which force had each group of horses
to apply in order to separate the hemispheres?

Reason: Magdeburg Hemispheres. Physics.

Solution: The evacuated Magdeburg hemispheres are affected by the
difference of external and internal air pressure ∆p which presses them
together. To calculate the total force on one of the two hemispheres,
we consider a surface element dA. The ambient air exerts a force d~F on
this area that is perpendicular to the surface element and of an amount
dF = ∆p dA . However, we are only interested in the horizontal part of
this force ~F‖ which is parallel to the direction to which the horses pull,
i.e. parallel to the horizontal symmetry axis of the hemisphere. The
perpendicular components ~F⊥ cancel themselves out. If we denote the
angle ϕ between the normal to the surface and the direction of pull,
then the parallel component has an amount of

dF‖ = dF · cosϕ = ∆p dA · cosϕ =: ∆p dA′ =: dF ′‖

The quantity dA′ = dA · cosϕ can be viewed as parallel projection ot
the surface area dA onto a cylinder (see the figure).
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The parallel component dF ′‖ of the force which the air pressure exerts
onto the projected surface area element dA′ is thus of the same amount
as the parallel component dF‖ of the original force exerts on the origi-
nal surface element dA .

The total amount of force exerted by the air pressure onto the hemi-
sphere is the sum of all forces over the surface elements which com-
pose the hemisphere. Since dF‖ = dF ′‖ we have for the total amount
Fair = F ′air, the force onto the projection. So the two hemispheres are
pressed together as two cylinders were, whose diameters correspond to
the section of the hemispheres: R. The force of air pressure on a cylin-
der is easy to calculate. It’s simply the product of pressure and circle
area:

Fair = F ′air = ∆p A◦ = πR2∆p

The example then calculates to a force of

Fair = π · (0.3)2(1.013− 0.1) 105 N ≈ 26 kN

which each group of horses has to come up with in order to separate
the hemispheres. For comparison: One horsepower is approximately
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735.5 Watt, so 30 horses would produce 22 kW . A horse pulls with
approximately 10 − 12 % of its weight, i.e. with ca. 700 N or 21 kN
for 30 horses.
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