
An Introduction to the Theory of

Characteristics

Mat Hunt

October 30, 2008

Abstract

This document is essentially and introduction to first order quasilin-

ear partial differential equations. We shall approach the solution of

such equations via a geometrical approach called the method of char-

acteristics, we shall see that this greatly reduces the complexity of

the problem of solution. The end goal is to apply these methods to

inviscid fluid flow which will reduce the nonlinear set of PDE’s to a

set of algebraic equations.

1 Linear 1st Order Partial Differential Equa-

tions

For a model problem take the PDE:

a(t, x)
∂u

∂t
+ b(t, x)

∂u

∂x
= c(t, x) (1)

Where a, b, c are functions of t and x and the initial condition u(0, x) = f(x).
At first sight this seems quite a difficult problem to tackle.

1.1 A Geometrical Approach

The solution of the partial differential equation (2) can be viewed as a two
dimensional surface, viewing the problem in this manner allows the use of
geometric constructs which allow the problem to be reduced in complexity.
To start with the PDE is rewritten in a slightly trivial way as:

a
∂u

∂t
+ b

∂u

∂x
− c = 0 (2)
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Figure 1: Gradient of a surface

Now write (2) as a dot product of two three dimensional vectors in the
following manner:

(ai + bj + ck) ·

(

∂u

∂t
i +

∂u

∂x
j − k

)

= 0 (3)

At first sight this doesn’t seem to help matters much but if y = u(t, x) is
viewed as a two dimensional surface in three dimensional space then the
vector:

n :=
∂u

∂t
i +

∂u

∂x
j − k

defines a normal to the surface y = u(t, x) at every point. To prove this
fact consider the position vector r = ti + xj + yk and the vector r + dr.
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Completing the triangle of the vectors as in Figure 1, it can clearly be seen
that the vector dr lies in the tangent plane to the surface.
The three dimensional gradient operator in the variables is:

∇ = i
∂

∂t
+ j

∂

∂x
+ k

∂

∂u

Writing the equation of the surface as f(t, x) − u = φ and computing dφ
using the chain rule gives:

dφ =
∂φ

∂t
dt +

∂φ

∂x
dx +

∂φ

∂u
du

=
∂f

∂t
dt +

∂f

∂x
dx − du

=

(

∂f

∂t
i +

∂f

∂x
j − k

)

· (dti + dxj + duk)

= ∇φ · dr

= 0

As dr lies in the tangent plane, the other vector in the dot product must
be at right angles to the tangent vector, that is it must be a normal to the
surface.
So, this shows that the vector ai + bj + ck must be a tangent vector. It is
possible to build a curve (t(s)i + x(s)j + u(s)k) paramatrised by s on the
surface with this tangent vector, these curves are called characteristics. So
now it is possible to effectively solve the equations on this special curve as
the partial differential equation is now written in the following manner:

dt

ds
= a,

dx

ds
= b,

du

ds
= c (4)

So The next question is how it is possible to fit the initial data into this
set-up.

1.2 Cauchy Data

The notion of Cauchy data is quite simple. Given a curve Γ(v) in the (t, x)
plane, Cauchy data is simply the prescription of initial data (of u) on that
curve. The initial data can be written in the form:

t = t0(v), x = x0(v), u = u0(v) (5)
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Figure 2: Cauchy Data

Denoting the derivative with respect to s as dx/ds = ẋ and the derivative
with respect to v dx/dv = x′ it is possible to differentiate the initial data
along the curve Γ as:

u′

0 =
∂u0

∂t
t′0 +

∂u0

∂x
x′

0 (6)

Using the initial equation (2), we have a pair of equations for the derivatives
∂u/∂t and ∂u/∂x, of the form:

a
∂u

∂t
+ b

∂u

∂x
= c

t′0
∂u

∂t
+ x′

0

∂u

∂x
= u′

0

Basic Linear algebra says that a unique solution exists for these equations
exist if and only if

∣

∣

∣

∣

∣

a b
t′0 x′

0

∣

∣

∣

∣

∣

= ax′

0 − bt′0 6= 0

If this is not the case then the values of the derivatives become multi-valued1.
Example 1

Consider the problem:

t
∂u

∂t
+ x

∂u

∂x
= (x + y)u with u = 1 on t = 1, x ∈ (1, 2)

1These are called shocks in hydrodynamics
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The initial data (at t=1) can be written as:

t0(v) = 1, x0(v) = v, u0 = 1, v ∈ (1, 2)

The characteristic equations are:

ṫ = t, ẋ = x, u̇ = (x + y)u

Solving the first two equations gives:

log x − log x0 = s, log y − log y0 = s

Now, the initial conditions were given at s = 1, so looking back at the Cauchy
data gives t0 = 1, x0 = v and hence the solutions are:

t = es, x = ves

This can be used for the third characteristic equation:

du

ds
= (x + y)u = es(1 + v)u

Giving as a solution:

log u − log u0(v) = (es − 1)(1 + v)

As u0(v) = 1 this gives log u0(v) = 0. The solution is given by:

log u = es(1 + v) − (1 + v)

Using the equations for t and x the variables s and v can be eliminated to
give:

log u = t + x − 1 −
x

t

Example 2

consider the partial differential equation:

x
∂u

∂t
− 2tx

∂u

∂x
= 2tu, with u = x3 on t = 0, x ∈ [1, 2]

The first step is to write out the Cauchy data:

x0(v) = v, t0(v) = 0, u0(v) = v3
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The characteristic equations are:

ṫ = x, ẋ = −2tx u̇ = 2tu

As in the previous example the way forward is to take quotients of the char-
acteristic equations, in doing this:

dx

dt
=

ẋ

ṫ
= −2t,

du

dx
=

u̇

ẋ
= −

u

x

Integrating these equations give:

x + t2 = x0 + t20, ux = u0x0

Upon using the Cauchy data, these equations become:

x + t2 = v, xu = v4

Eliminating v gives the solution:

u =
(x + t2)4

x

The method works for quasilinear first order partial differential equations of
the form:

a(t, x, u)
∂u

∂t
+ b(t, x, u)

∂u

∂x
= c(t, x, u) (7)

The following example shows how.
Example 3

∂u

∂t
+

∂u

∂x
= u2 with u = e−x2

on t = 0

The equations for the characteristics are:

ṫ = 1

ẋ = 1

u̇ = u2

The cauchy data is given by:

t = 0, x = v, u = e−v2
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Solving the first two characteristic equations gives:

t = s + t0(v)

x = s + x0(v)

Upon using the Cauchy data, the characteristics become:

t = s

x = s + v

Eliminating s from the equations shows that x − t = v. The third equation
is solved to give:

−
1

u
+

1

u0(v)
= s

Upon using the Cauchy data for u, gives:

−
1

u
+ ev2

= s

Plugging in the values for s and v yields:

u =
1

e(x−t)2 − t

Note that on the curve t = exp(x − t)2 the solution does not exist, this
means that the domain which is the solution is defined must be restricted to
t < exp(x − t)2. So the method even works for quasilinear equations.

2 Method of Characteristics for Systems of

PDEs

This section details the extension of the method of characteristics for sys-
tems of equations and will be most useful when applied to the inviscid flow
equations where a whole new method of problem solving will open up. For
now consider the system of equations as follows:

a11
∂u

∂t
+ a12

∂v

∂t
+ a13

∂w

∂t
+ b11

∂u

∂x
+ b12

∂v

∂x
+ b13

∂w

∂x
= c1

a21
∂u

∂t
+ a22

∂v

∂t
+ a23

∂w

∂t
+ b21

∂u

∂x
+ b22

∂v

∂x
+ b23

∂w

∂x
= c2

a31
∂u

∂t
+ a32

∂v

∂t
+ a33

∂w

∂t
+ b31

∂u

∂x
+ b32

∂v

∂x
+ b33

∂w

∂x
= c3
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Where the coefficients are all functions of t, x, u, v, w. The system can be
written in Matrix form as:

A
∂u

∂t
+ B

∂u

∂x
= c

Where A = (aij),B = (bij), c = (ci) and u = (u, v, w). A small restriction is
made upon A is that detA 6= 0.

2.1 Cauchy Data and Systems of PDEs

For the purpose of this section the matrices A and B are 2×2 but this won’t
make much difference to the theory as the same holds for systems of more
equations. To start with a solution of a 2 × 2 system

A
∂u

∂t
+ B

∂u

∂x
= c (8)

As before the geometrical interpretation sought after is the description of two
surfaces u = f1(t, x) and v = f2(t, x). A condition that is expected to hold
is that the surfaces representing the solution should pass through the initial
curve. this is a boundary condition for the solution surface, such a boundary
condition can be written in the form:

u = u0(s), x = t0(s), x = x0(s) for s1 ≤ s ≤ s2

Differentiating the boundary condition along the initial curve yields:

u0 = t′0
∂u

∂t
+ x′

0

∂u

∂x
(9)

The partial derivatives are uniquely defined if and only if

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 b11 b12

a21 a22 b21 b22

t′0 0 x′

0 0
0 t′0 0 x′

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 (10)

denoting λ = x′

0/t
′

0, then adding −1/λ lots of the third column to the first
column and adding −1/λ lots of the fourth column to the second column
gives:

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 −
1
λ
b11 a12 −

1
λ
b12 b11 b12

a21 −
1
λ
b21 a22 −

1
λ
b22 b21 b22

0 0 x′

0 0
0 0 0 x′

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= x′2
0

∣

∣

∣

∣

∣

a11 −
1
λ
b11 a12 −

1
λ
b12

a21 −
1
λ
b21 a22 −

1
λ
b22

∣

∣

∣

∣

∣

= x′2
0 λ2 det(A−λB) 6= 0
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A characteristic is a curve in the (t, x) plane defined by:

det(A − λB) = 0 (11)

This means that the characteristics are the curves of discontinuity in the
(t, x) plane. As am example of calculating the characteristics, consider the
2D steady linearised gas dynamics equations:

ρ0

(

∂u

∂x
+

∂v

∂y

)

+ U
∂ρ

∂x
= 0

U
∂u

∂x
+

a2
0

ρ0

∂ρ

∂x
= 0

U
∂v

∂x
+

a2
0

ρ0

∂ρ

∂y
= 0

The A and B for this system are:

A =









ρ0 0 U

U 0
a2

0

ρ0

0 U 0









B =









0 ρ0 0
0 0 0

0 0
a2

0

ρ0









u =







u
v
ρ







Solving the equation det(A − λB) = 0 gives:

∣

∣

∣

∣

∣

∣

∣

∣

ρ0 −λρ0 U

U 0
a2

0

ρ0

0 U −λ
a2

0

ρ0

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Which gives det(A− λB) = λa2
0U(λ2 + a2

0 − U2) = 0, the characteristics are
real if and only if U2 > a2

0 which implies the linearised flow is supersonic.
The characteristics in this case are the streamlines of the unperturbed flow

dx/dt = 0 and the “Mach lines” dx/dt = ±
√

U2 − a2
0.

2.2 Riemann Invariants

There is still more which can be said and it gives rise to the important concept
of a Riemann Invariant. Differentiating u along a characteristic gives:

u̇ = ṫ
∂u

∂t
+ ẋ

∂u

∂x
(12)

Pre-multiply the original system of PDEs by ṫA−1 to give:
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ṫA−1

(

A
∂u

∂t
+ B

∂u

∂x

)

= ṫA−1c

ṫ
∂u

∂t
+ ṫA−1B

∂u

∂x
= ṫA−1c

Substituting for ṫ∂u/∂t gives:

u̇ − ẋI
∂u

∂x
+ ṫA−1B

∂u

∂x
= ṫAc

Re-arranging this gives:

A−1cṫ − u̇ = (ṫA−1B − ẋI)
∂u

∂x
(13)

Now multiply (13) on the left by an arbitrary row vector `T to give:

`T (A−1cṫ − u̇) = `T (ṫA−1B − ẋI)
∂u

∂x

Now if the row vector `T is chosen in such a way that:

`T (ṫA−1B − ẋI) = 0 (14)

Then the following holds:

`TA−1cṫ = `T u̇ (15)

Integrating (15) gives functions which are constant on the characteristics,
these functions are called Riemann Invariants. The value of λ in this case is
given by ẋ/ṫ = dx/dt.

2.3 Examples of Riemann Invariants

Consider the system:

∂u

∂x
+

∂v

∂y
+

∂w

∂y
= 0

∂v

∂x
+

∂u

∂y
+ 2

∂v

∂y
+

∂w

∂y
= 0

∂w

∂x
−

∂u

∂y
+ 2

∂v

∂y
= 0
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The relevant vector variable here is u = (u, v, w), the system can be written
in matrix notation as:

∂u

∂x
+ B

∂u

∂y
= 0

Where:

B =







1 1 0
1 2 1
−1 2 0







Computing det(λI − B) = 0 gives:

∣

∣

∣

∣

∣

∣

∣

λ − 1 −1 0
−1 λ − 2 −1
1 −2 −λ

∣

∣

∣

∣

∣

∣

∣

= λ3 − 3λ2 − λ + 3 = 0

The solutions are λ = ±1, 3. To compute the Riemann invariants the row
vector `T needs to be calculated. Writing `T = (α, β, γ) the expression (14)
becomes:

(

α β γ
)







λ − 1 −1 0
−1 λ − 2 −1
1 −2 λ





 = 0

This gives three equations:

(λ − 1)α − β + γ = 0

−α + (λ − 2)β − 2γ = 0

−β − λγ = 0

The solution of these equations are:

`T = (−3, 1, 1), λ = 1
`T = (−1, 1,−1), λ = −1
`T = (−2, 3, 1), λ = 3

Then the Riemann invariants are:

R1 = −3u + v + w, dy/dx = 1
R2 = −u + v − w, dy/dx = −1
R3 = −2u + 3v + w, dy/dx = 3
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The next example is the unsteady Euler equations in the form:

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂u

∂t
+ u

∂u

∂x
= −

1

ρ

∂p

∂x

∂p

∂t
+ u

∂p

∂x
= a2

[

∂ρ

∂t
+ u

∂ρ

∂x

]

This can be written in the form:

A
∂u

∂t
+ B

∂u

∂x
= 0 (16)

Where u = (ρ, u, p) and:

A =







1 0 0
0 1 0

−a2 0 1





 , B =







u ρ 0
0 u 1/ρ

−ua2 0 u







Multiplying throughout by A−1 gives and equation of the form:

∂u

∂t
+ C

∂u

∂x
= 0

where

C =







u ρ 0
0 u 1/ρ
0 a2ρ u







The next task is to calculate the eigenvalues of C, this is a straightforward
calculation, yielding three separate eigenvalues: λ = u, u + a, u − a. To
calculate the left eigenvectors, compute:

(

α β γ
)







u − λ ρ 0
0 u − λ 1/ρ
0 a2ρ u − λ





 = 0

This reduces to three linear equations:

α(u − λ) = 0

αρ + (u − λ)β + a2ργ = 0

β/ρ + γ(u − λ) = 0

Looking at the eigenvalues λ = u ± a shows that α = 0 and β = ±ρaγ.
Taking β = 1 and γ = ±1/ρa gives the corresponding eigenvectors to be
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`T = (0, 1,±1/ρa). The derivatives of the Riemann invariants are then given
by:

dR+ = du +
dp

ρa
on

dx

dt
= u + a (17)

dR− = du −
dp

ρa
on

dx

dt
= u − a (18)

The Lagrangian equations of fluid mechanics can also be cast into character-
istic form. The equations in Lagrangian form are:

∂

∂t

(

1

ν

∂x

∂a

)

= 0 (19)

∂u

∂t
+ ν0

∂p

∂a
= 0 (20)

a2 = −ν2 ∂p

∂ν
(21)

Expanding (19) gives:
∂ν

∂t
− ν0

∂u

∂a
= 0 (22)

Equation (21) can be written as:

∂ν

∂t
+

ν2

a2

∂p

∂t
= 0 (23)

Equations (22), (20) and (23) make up the equations required to carry out a
characteristic analysis. Use:

∂ν

∂t
− ν0

∂u

∂a
= 0

∂u

∂t
+ ν0

∂p

∂a
= 0

∂ν

∂t
+

ν2

a2

∂p

∂t
= 0

This can be written in the form:

A
∂u

∂t
+ B

∂u

∂x
= 0 (24)

Where u = (ν, u, p) and:

A =







1 0 0
0 1 0
1 0 ν2/a2





 , B =







0 −ν0 0
0 0 ν0

0 0 0






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Multiplying throughout by A−1 gives and equation of the form:

∂u

∂t
+ C

∂u

∂x
= 0

where

C =







0 −ν0 0
0 0 ν0

0 C2/ν0 0







The eigenvalues (λ) of C are given by det(C− λI) = 0. The eigenvalues are
then given by λ = 0,±C. The next task is to compute the eigenvectors of
C, they are given by:

(

α β γ
)







−λ −ν0 0
0 −λ ν0

0 C2/ν0 −λ





 = 0

For λ 6= 0, α = 0 and the three equations reduce to β = ρ0λγ. A solution of
this equation is β = 1 and γ = ±ρ0C for λ = ±C. The Riemann invariants
(R±) on the characteristics da/dt = ±C are:

R+ = u +
∫ dp

ρ0C
on

da

dt
= C (25)

R− = u −

∫ dp

ρ0C
on

da

dt
= −C (26)

On their respective characteristics the Riemann invariants are constant, so
taking the positive characteristic om the free surface and noting that dp = 0
on the free surface, the Riemann invariant is R+ = ufs. The same Riemann
invariant in the material will give the particle velocity and so:

ufs =
1

2

(

u +
∫ dp

ρ0C

)

(27)

which is valid on da/dt = +C.
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