LIST OF EQUATIONS

Note: Not all of these equations are required for the examination.

$$
\begin{gathered}
\sigma_{x^{\prime}}=\sigma_{x} \cos ^{2} a+\sigma_{y} \sin ^{2} a+\tau_{x y} \sin 2 a \\
\sigma_{y^{\prime}}=\sigma_{x} \sin ^{2} a+\sigma_{y} \cos ^{2} a-\tau_{x y} \sin 2 a \\
\tau_{x^{\prime} y^{\prime}}=\left(\frac{\sigma_{y}-\sigma_{x}}{2}\right) \sin 2 a+\tau_{x y} \cos 2 a \\
\varepsilon_{x^{\prime}}=\varepsilon_{x} \cos ^{2} \alpha+\varepsilon_{y} \sin ^{2} \alpha+\frac{\gamma_{x y}}{2} \sin 2 \alpha \\
\frac{\gamma_{x^{\prime} y^{\prime}}}{2}=\frac{\varepsilon_{y}-\varepsilon_{x}}{2} \sin 2 \theta+\frac{\gamma_{x y}}{2} \cos 2 \theta \\
\varepsilon_{1,2}=\varepsilon_{\max , \text { min }}=\frac{\varepsilon_{x}+\varepsilon_{y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right)^{2}+\left(\frac{\gamma_{x y}}{2}\right)^{2}} \tan 2 \alpha=\frac{\gamma_{\max }}{2}=\frac{\varepsilon_{1}-\varepsilon_{2}}{2} \\
\varepsilon_{x}-\varepsilon_{y} \\
\sigma_{1,2}=\sigma_{\max , \min }=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \tan 2 \alpha=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}} \\
\tau_{\max }=\frac{\sigma_{1}-\sigma_{2}}{2}
\end{gathered}
$$

General Constitutive $\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] \quad \tau_{x y}=G \gamma_{x y}$
Equations;

$$
\begin{array}{ll}
\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right] & \tau_{x z}=G \gamma_{x z} \\
\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] & \tau_{y z}=G \gamma_{y z}
\end{array}
$$

$$
\begin{gathered}
\sigma_{x}=\lambda \varepsilon_{v}+2 \mathrm{G} \varepsilon_{x} \\
\sigma_{y}=\lambda \varepsilon_{v}+2 \mathrm{G} \varepsilon_{y} \\
\sigma_{z}=\lambda \varepsilon_{v}+2 \mathrm{G} \varepsilon_{z} \\
\lambda=\frac{v E}{(1+v)(1-2 v)} \quad \mathrm{G}=\frac{E}{2(1+v)}
\end{gathered}
$$

$$
\varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}
$$

Constitutive Equations
(Plane Stress conditions):

$$
\begin{array}{ll}
\sigma_{x}=\frac{E}{\left(1-v^{2}\right)}\left[\varepsilon_{x}+v \varepsilon_{y}\right] & \tau_{x y}=G \gamma_{x y} \\
\sigma_{y}=\frac{E}{\left(1-v^{2}\right)}\left[\varepsilon_{y}+v \varepsilon_{x}\right] & G=\frac{E}{2(1+v)}
\end{array}
$$

Spherical Pressure Vessels $\quad \sigma_{1}=\sigma_{2}=\frac{p r}{2 t}$
Cylindrical Pressure Vessels

$$
\sigma_{1}=\frac{p r}{t} ; \sigma_{2}=\frac{p r}{2 t}
$$

Von Mises Failure Criteria (plane stress)

$$
\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}<\sigma_{\text {Yield }}^{2}
$$

Tresca Failure Criteria (plane stress) $\quad \tau_{\max } \leq \frac{\sigma_{\text {yield }}}{2}$

Maximum Principle stress Failure criteria $\quad \sigma_{\max }<\sigma_{u l t}$

For 60° rosette $\gamma_{x y}=\frac{2}{\sqrt{3}}\left(\varepsilon_{C}-\varepsilon_{B}\right)$ and $\varepsilon_{y}=\frac{2}{3}\left(\varepsilon_{B}+\varepsilon_{C}-\frac{\varepsilon_{A}}{2}\right)$ and $\varepsilon_{x}=\varepsilon_{a}$
$\tau=\frac{V A \bar{y}}{I b} \quad \sigma=\frac{M y}{I}$
$I_{\text {rectangle }}=\frac{b h^{3}}{12}$
$I_{x x}=I_{11}+A \bar{y}^{2}$
$E I \frac{d^{2} y}{d x^{2}}=M$

First Yield Moment:

$$
M_{y}=Z f_{y} \quad Z=\frac{I}{y}
$$

Fully Plastic Moment: $\quad M_{p}=S f_{y}$
Shape Factor:

$$
\eta=\frac{M_{p}}{M_{y}}=\frac{S}{Z}
$$

Moment area Theorem 1: $\theta_{B}-\theta_{A}=\operatorname{Area} \frac{M}{E I}$
Moment area Theorem 2: If a vertical line is drawn at any location D, and tangents are produced from A and B to intersect this line, the distance between the points of intersection is equal to the first moment of area of that portion of the M/EI diagram between A and B, taken with respect to that line.

Centroids and Areas of some common BMD shapes

