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Criteria for the reality of matrix eigenvalues
By
MICHAEL P. DRAZIN and EMILIE V. HAYNSWORTH

In this note we are, essentially, concerned with generalizations of the
(known) fact that an # x# matrix with # linearly independent eigenvectors
all corresponding to real eigenvalues is similar to a hermitian matrix, and can
consequently be transformed into its conjugate transpose by a positive definite
hermitian similarity. We first establish, for any positive integer m, an anal-
ogous necessary and sufficient condition that a given square complex matrix 4
should have a set of real eigenvalues, not necessarily all distinct, to which
there correspond at least m linearly independent eigenvectors; this of course
implies a corresponding result about pure imaginary eigenvalues. We also
obtain an analogous result concerning eigenvalues of modulus unity.

As a simple application of our more general results, we establish, in Theo-
rem 4, the reality of the eigenvalues of a certain rather special type of matrix.
Throughout, we shall use 4 = (;;) to denote an arbitrary # X # complex matrix,
and A* will denote the transposed conjugate matrix; we denote the rank of 4
by »(4).

THEOREM 1. A mecessary?) and sufficient condition for the existence of a
set of m linearly independent eigenvectors of A all corvesponding to real ergen-
values (or, equivalently, for the Jordan normal form of A to have at least m blocks
with real eigenvalues) is that there exist a positive semi-definite hermitian matrix S
of rank m such that A S is hermitian, i.e.

(1) AS=SA4*.
Proof of mecessity. Let ay, ..., &, be arbitrary given eigenvectors of A
corresponding to real eigenvalues o, ..., a,, (which we do not assume distinct),

and define # X m, m X m matrices
X=(®,...., %s), D=diag(oy,...,,).
Then A X=XD, and so, since D is real,
AXX*=XDX*=X(XD)*=X(AX)*=XX*A,

i.e. we can certainly satisfy (1) by taking S= X X*, which is plainly a positive
semi-definite hermitian matrix.

1) Necessity is (as has been pointed out above) already known in the case m=n;
see e.g. REID [2], or, for a special case, Taussky [3]. For sufficiency, cf. also TURNBULL
and AITKEN [4], p. 108.
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Also, if any given linear combination of rows of S vanishes, say yS=0
for some complex row n-vector g, then Y X) (yX)*=y Sy*=0, whence
Y X =0, and, of course, conversely. Thus the row rank of S coincides with
that of X, ie. 7(S)=7r(X).2%)

Finally, if the a; are independent, then 7(X)=m, and so 7(S)=m, as
required.

Proof of sufficiency. We apply an argument used by GODDARD and SCHNEI-
DER [I] in another connection (however, their result does not overlap ours).
Given any positive semi-definite matrix S of rank m, we can find a non-singular

matrix P such that S= PN P*, where N =(I’" ) and I,, denotes the unit
matrix of order m. Then (1) becomes 00

PLAPN = N(P14P)*,
and so, partitioning B=P14 P conformally with N, say B= (B“ B, 2) )

By By
we have (Bu 0) _ (Bﬁ B;l)
By, 0 o o /)
e P—IAP=B=(B“ B”),
B22

where B, is a hermitian matrix of order m, and consequently has a linearly
independent set 2, ..., 2, of eigenvectors with real eigenvalues.3) Then

clearly the n-vectors P (il), ., P (i"’) (with # —m zeroes below the z;) form

a linearly independent set of m eigenvectors for 4 with (the same set of) real
eigenvalues, as required.
We note two immediate corollaries of Theorem 1:

COROLLARY 1. If A has m distinct real eigenvalues, then there is a positive
semi-definite hermitian matrix S of rank m satisfying (1); conversely, given
any such S, then A must have at least m (not necessarily distinct) real eigenvalues,
and, if m=mn, then A is diagonable.

COROLLARY 2. If A has real trace or real non-zero determinant, and we are
given (1) with 7 (S)=mn—1, then all the eigenvalues of A are real.

Of these, the first follows trivially from the theorem. As for the second,
we have only to remark that 4 has at least # — 1 real eigenvalues by Theorem 1,
and so, since the trace and determinant of a matrix are respectively just the
sum and product of its eigenvalues, it follows that the #-th eigenvalue must
be real also. More generally, as has been kindly pointed out to us by K. GoLp-
BERG, it is enough that, in the characteristic function of A, there occurs some
consecutive pair of real coefficients with the higher non-zero.

%) That #(XX*) =v(X), even for arbitrary X, is of course well known, but we have
included the argument for completeness.

%) Since P can be computed from S by the use of a standard algorithm, we can always
compute the B;; effectively when S is given numerically.
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Another immediate consequence of Theorem 1 (obtained by replacing 4
by ¢4) is the following:

THEOREM 2. A necessary and sufficient condition for the existence of a set
of m linearly independent eigenvectors of A all corresponding to purely imaginary
ergenvalues is that there exist a positive semi-definite hermitian matrix S of rank m
such that A S is skew hermitian, i.e. AS=— S A*.

The following somewhat analogous result does not seem to be deducible
directly from Theorem 1, but can be proved by closely parallel arguments:

THEOREM 3. A mecessary and sufficient condition for the existence of a set
of m linearly independent eigenvectors of A all corresponding to eigenvalues of

absolute value 1 is that there exist a positive semi-definite hermitian matrix S
of rank m such that

2) ASA*=S.

Proof of necessity. Defining X, D as in the proof of necessity in Theorem 1,
but with the «; now assumed to be of unit modulus rather than real, we still
have A X=XD, so that

AXX*A* = AX(AX)* = XD (XD)* = X (DD*) X* — X X*:

thus we see, as before, that the choice S= X X* satisfies all the required con-
ditions.

Proof of sufficiency. Given S of rank m, then, with N , P as in our proof
sufficiency in Theorem 1 above, we may rewrite (2) in the form

P1APN(P1AP)*=N,
i.e., on defining B=P14 P and partitioning as before,

(Bu Bfy By, Bgﬁ) _ (Im 0)
By, BYy B, B4 0 o

Thus By;=0 and P14 P=B= (Bu B”) with By, unitary, and so the result
follows as before. By,

We can of course deduce results analogous to Corollary 1 for Theorems 2
and 3; the same is true also of Corollary 2 if we omit the reference to the trace
function for the latter theorem.

We may use the results we have obtained to establish the reality of the eigen-
values of more restricted classes of matrix. For example:

THEOREM 4. Given A=(a;), lot v,= Y a;, (i=1, ..., n), define an nxn
F=1
matrix E = (e;;) by taking €;;=r,—7;, and suppose that
3) A¥*— A =cE

for some real ¢ > —1[n (or ¢ = —1/n if A has real trace or veal non-zero deter-
minant). Then A has all its eigenvalues real (and A is diagonable ifc=—1/n).
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Proof. If J denotes the n Xn matrix consisting entirely of 1’s, then clearly
E=A ] — JA*, so that (3) may be rewritten in the form

Al +-c]) =T +c]) 4*.

Hence, taking S=1I- ¢ J, which is easily checked to be a positive semi-definite
hermitian matrix of rank at least #»—1 for all ¢ = —1/n (and positive definite
for ¢ > —1/n), we obtain the result at once from Theorem 1 and Corollary 2
above.

It is clear from the argument of Theorem 4 that it would be very easy to
concoct any number of results along similar lines; but this single example
should suffice to illustrate the principle. The case ¢=0 of Theorem 4 is of
course standard; we note also, in connection with the final parenthetic clause

of the conclusion, that even a real 4 need not be diagonable when ¢= — 1 /n,
as the example 4 =( ! 1) shows.
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