Using the property:

$$
\frac{d}{d t}\left(\sum_{n=1}^{\infty} f_{n}(t)\right)=\sum_{n=1}^{\infty} f_{n}^{\prime}(t)
$$

Leibniz's Rule.

So,

$$
\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{\sin (n x)}{2^{n} n}\right)=\sum_{n=1}^{\infty} \frac{n \cos (n x)}{2^{n} n}=\sum_{n=1}^{\infty} \frac{\cos (n x)}{2^{n}}=\frac{d}{d x} S(x)
$$

So that,

$$
\sum_{n=1}^{\infty} \frac{\cos (n x)}{2^{n}}=\left(\sum_{n=0}^{\infty} \frac{\cos (n x)}{2^{n}}\right)-\frac{\cos (0 * x)}{2^{0}}=\left(\sum_{n=0}^{\infty} \frac{\cos (n x)}{2^{n}}\right)-1
$$

So therefore:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\cos (n x)}{2^{n}}= & \sum_{n=0}^{\infty} \frac{\left[\frac{e^{i n x}+e^{-i n x}}{2}\right]}{2^{n}}=\sum_{n=0}^{\infty} \frac{\left[\frac{e^{i n x}+e^{-i n x}}{2}\right]}{2^{n}}=\sum_{n=0}^{\infty}\left[\frac{e^{i n x}+e^{-i n x}}{2 * 2^{n}}\right] \\
& =\frac{1}{2}\left\{\sum_{n=0}^{\infty}\left[\frac{e^{i x}}{2}\right]^{n}+\sum_{n=0}^{\infty}\left[\frac{e^{-i x}}{2}\right]^{n}\right\}=\frac{1}{2}\left\{\frac{1}{1-\frac{e^{i x}}{2}}+\frac{1}{1-\frac{e^{-i x}}{2}}\right\}=\frac{1}{2}\left\{\frac{2}{2-e^{i x}}+\frac{2}{2-e^{-i x}}\right\} \\
& =\frac{1}{2}\left\{\frac{2}{2-\cos (x)-i \sin (x)}+\frac{2}{2-\cos (x)+i \sin (x)}\right\} \\
& =\frac{1}{2}\left\{\frac{2(2-\cos (x)+i \sin (x))+2(2-\cos (x)-i \sin (x))}{[2-\cos (x)]^{2}+\sin ^{2}(x)}\right\}=\frac{1}{2}\left\{\frac{8-4 \cos (x)}{5-4 \cos (x)}\right\}
\end{aligned}
$$

So that,

$$
S^{\prime}(x)=\left(\sum_{n=0}^{\infty} \frac{\cos (n x)}{2^{n}}\right)-1=\frac{4-2 \cos (x)}{5-4 \cos (x)}-1=\frac{4-2 \cos (x)-5+4 \cos (x)}{5-4 \cos (x)}=\frac{2 \cos (x)-1}{5-4 \cos (x)}
$$

Therefore,

$$
S(x)=\int \frac{2 \cos (x)-1}{5-4 \cos (x)} d x=\tan ^{-1}\left(3 \tan \left(\frac{x}{2}\right)\right)-\frac{x}{2}
$$

I solved this using mathematica but it seems a complex integral to be solved analytically by hand; though I suspect the professor will ask for an analytical solution.

