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HE EVOLUTION of a given body of knowledge 
Tfrom a catalog of apparently unrelated 
facts to an exact science at  the molecular level 
generally follows a path in which somewhere 
along the way the consideration of quantifiable 
physicai models becomes necessary. Such models, 
when they enter upon the scene, play many roles 
in the course of the development of the area of 
knowledge. Initially they serve to provide the 
primitive quantitative interrelationships among 
the variables that considered intuition alone 
had been unable to do. From these, suitable 
in oitro, in situ, or in vivo experiments are designed. 
With refinement of the models and with con- 
tinued experimentation, knowledge is efficiently 
built up to a rather sophisticated level. 

This review is intended to cover some of those 
stiuations in biopharmaceutics where physical 
models involving drug transport have materially 
helped or are helping in answering complex 
questions. Some situations are also discussed 
where such methods have not yet been applied 
but are indicated. Attention is given only to 
those problems in which physical models have 
been applied in contrast to those where empirical 
or arbitrary mathematical kinetic models have 
been employed. 

DISSOLUTION RATES OF SOLIDS 

General Considerations-Wurster and Tay- 
lor (1) have already presented a comprehensive 
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review of this subject. Wagner (2), in an 
earlier review article, also discussed this sub- 
ject and related i t  to biological availability. 
The readers are referred to both of these ex- 
cellent reviews which serve to provide more than 
adequate background for the present discussion. 

From the standpoint of rate mechanisms 
involving pure substances there are basically 
three processes that have been accessible to the 
physical model treatment. These have been 
employed alone or in combinations in setting up 
the models for describing dissolution rate mech- 
anisms. Figure 1 schematically illustrates 
those cases when each of these alone is rate 
determining. 

Case A represents the diffusion layer showing 
a crystal or a polycrystalline solid dissolving 
into pure solvent. This model in its earliest 

Fig. I-Illustration 
of the situations f o r  
the three mechanisms 
of dissolution rate 
behavior of solids. 
Concentration pro- 

files are shown for  
cases A and B ,  and 
packet transport is 
depicted for  case C. 
Case A, diffusion 
layer model ( top);  
rase B, interfacial 
barrier model (mid-  
dle); case C ,  Danck- 
werts’ model (bot- 

tom) .  

315 



316 

form was probably first discussed by Nernst (3). 
Here it is assumed that there is a liquid layer 
(“film”) of thickness, h, in which there is a neg- 
ligible velocity component in the x-direction 
(perpendicular to the surface). At x > h, 
it  is assumed that rapid mixing is present. 
Therefore, no gradients of concentration may 
exist in this region. At x = 0 (the solid-liquid 
interface) it is assumed that solid-solution 
equilibrium exists. Then the rate of solute 
movement and therefore the dissolution rate is 
determined entirely by Brownian motion dif- 
fusion of the molecules in the liquid “film” 

Case B illustrates the interfacial barrier model 
where, because of a high activation free energy 
for the interfacial transport step, diffusion across 
the interface is much slower than diffusion across 
the “film” or transport by eddy packets to be 
discussed below. As a result, crystal-solution 
equilibrium a t  x = 0 may not be assumed, and 
this consideration must be included in the model. 

Finally, we have case C representing the 
Danckwerts’ model (41, where one imagines 
macroscopic packets of solvent reaching the 
solid-liquid interface by eddy diffusion in some 
random fashion. During its residence at the 
interface the packet is able to absorb solute 
according to the usual laws of diffusion. These 
surface elements are continuously replaced by 
new packets of solvent. This surface renewal 
process may then be related to the solute trans- 
port rate. 

Rate Laws Predicted by the Different 
Mechanisms-Let us consider the situation 
where a one component, one phase, solid of 
macroscopic (7 1 mm.) dimensions and of low 
to moderate (*5% j solubility dissolves with- 
out disintegration and without chemical re- 
action into a solvent under mild to high agita- 
tion conditions. Then the dissolution rate 
per unit area, G, according to the diffusion 
layer model for this case will be 

(x = 0 to x = hj. 
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in physically significant terms. First of all, 
the true (or microscopic) surface area rather than 
the geometric external area (of a tablet) should 
be considered. Furthermore, the different faces 
of a crystal should have different interfacial 
barriers. However, one often writes for this 
case, 

G = k,(C,  - C) (Eq. 3)  

where k ,  is the effective interfacial transport 
rate constant. The first-order dependence 07 

(C,  - C) implies that the process is a uniniolec- 
ular one. This is reasonable as one would ex- 
pect that the step movement rate on a crystal 
surface would be usually unimolecular. How- 
ever, perhaps a t  large undersaturations co- 
operative molecular effects may become im- 
portant More experimental studies are neeled 
before the (C,  - C) part of Eq. 3 can be re- 
garded as the usually expected form in a surface 
controlled situation. For the present we shall 
take Eq. 3 as the best a t  the moment to represent 
this case. 

When the interfacial barrier concept is com- 
bined with the diffusion layer case we have a 
double-barrier model 

where D is the solute molecule diffusion coef- 
ficient, C, is the solubility, C is the solute con- 
centration, and h as defined in Fig. 1 is the 
effective diffusion layer (“film”) thickness. 

The Danckwerts’ model for this case gives 

G = S1/2D1/z(C8 - C) (Eq. 2) 

where S is the mean rate of production of fresh 
surface. 

When an interfacial barrier is important, it  is 
much more difficult to derive a relationship for G 

which reduces to Eqs. 1 or 3, respectively, in the 
limits, k i  >> D / h  and ki << D/h.  

When the interfacial barrier idea is combined 
with Danckwerts’ surface renewal mechanism 
we have 

which reduces to Eqs. 2 or 3 in the limits. 
The diffusion layer and the Danckwerts 

theories may also be combined (5, 6). Surface 
elements of a finite length, L, in the x-direction 
must be taken. This combination leads to 
expressions which reduce to Eqs. 1 and 2, re- 
spectively, in the limits, L -+ 0 and L + a. 

Experimental Approach to an Examination 
of the Theories for One Component--One 
Phase Case-The reviewer believes’ that  there 
has been relatively convincing experimental 
work showing which theory is applicable and 
under what conditions. Part  of this stems 
from the fact that  the researchers frequently 
have been more interested in establishing 
other aspects than in differentiating the three 
basic models described above. 

1 Readers are referred to Wurster and Taylor’s discussion 
(1). (See also Refereizces 7 and 8.)  
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The classical Noyes-Whitney law (9), which 
states that 

G = constant x(C, - C) (Eq. 6) 

really, by itself, reveals very little mechanisti- 
cally when a single substance dissolves in a pure 
solvent under constant hydrodynamic conditions. 
This is because all theories predict the same 
first-order dependence upon AC = C, - C. 

When the dissolution behavior of many sub- 
stances in the same solvent is compared under 
the same hydrodynamic conditions, it may be 
possible to separate those which follow Eqs. 1 or 2 
from those following Eqs. 3, 4, or 5. If, further- 
more, compounds with a sufficiently wide range 
of D values are included in the study while 
maintaining everything else but C, constant, 
one should be able to distinguish data conforming 
to Eq. 1 from those following Eq. 2 or the dif- 
fusion layer-Danckwerts combination theory 
(6). The reviewer is not aware of work on this 
latter aspect that has led to unambiguous results. 
The work of Desai et al. (lo), to be discussed 
later, probably provides a more promising ap- 
proach to this problem. 

Finally by varying the rate of agitation one 
should be able to distinguish between those 
following Eq. 3 from those following Eqs. 4 or 5, 
provided that sufficient data are available with 
other substances obeying Eqs. 1 or 2 under the 
same hydrodynamic conditions. Data obeying 
Eqs. 4 and 5 may then be distinguished by 
employing the method used for Eqs. 1 and 2. 

Wurster and Taylor (11) in their studies of the 
dissolution rate behavior of prednisolone em- 
ployed Eq. 4 and Eq. 1. These investigators 
suggested that the double-barrier mechanism 
(Eq. 4) better described their data on the in- 
fluence of agitation upon the dissolution rates. 
Some recent single crystal studies by Tawashi 
(12) with cholesterol monohydrate and by Mehta 
(13) with methylprednisolone show that under 
certain conditions single crystals of these sub- 
stances of about 100-p dimensions dissolve by 
some interfacially controlled process in aqueous 
media. 

Small Particle Problems-Goyan (14) de- 
rived a relationship for the dissolution rate 
of a small spherical particle involving the sur- 
face renewal mechanism. In  one form i t  may 
be written 

where a is the particle radius (equivalent volume 
sphere) and the other symbols have been defined. 

Goyan has suggested that Eq. 7 rather than Eq. 1 
better describes the data (15) on the dissolution 
rate of salicylamide particles in water at high 
agitation rates. 

Equation 7 nicely reduces to the purely dif- 
fusion controlled case when S + 0 or when a + 0, 
via., 

It is noteworthy (compare Eq. 8 with Eq. 1) 
that, for small particles, h 'V a even with no 
agitation. 

For micron size particles at low to moderate 
agitation rates, Eq. 8 should be applicable if 
interfacial barrier effects are absent. The dis- 
solution rate behavior of dibutyl phthalate 
droplets in water agreed very well with this 
theory (16). 

If interfacial barrier effects are not negligible, 
a double-barrier relation may be written, 

which is identical to Eq. 4 when a = h. 
Particle size distribution effects may be taken 

into account by selecting a particle size distribu- 
tion function (17, 18) that is time dependent 
and by combining i t  with the appropriate Eqs. 
7 ,  8, or 9. For example, if the particle size 
distribution may be expressed by the function 
f ( a ) ,  where a is a function of time and where 
f (a)da is the number of particles between the 
sizes a and a + dn, we may write for the total 
dissolution rate, J ,  of the suspension, 

J ( t )  = lie f(a)G(a)da (Eq. 10) 

where a. and ue are, respectively, the smallest 
and the largest particles in the distribution. 
If f ( a )  is known by a particle size distribution 
measurement, then Eqs. 7, 8, or 9 may be em- 
ployed for G to provide an equation for f ex- 
plicit in time. This procedure was used employ- 
ing Eq. 8 to analyze data on the dissolution rate 
of a steroid suspension in water (18). 

Dissolution Rates with Simultaneous Solu- 
tion Interactions Involving Additives in the 
Solvent-In many practical situations the 
dissolving drug may become involved in an 
acid-base reaction, in complex formation, or in 
some other kind of solubilization interaction. 
In these instances the three basic models 
(Fig. 1) still apply in a qualitative sense. 
However, detailed consideration of the move- 
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ment of all solution species becomes necessary, 
resulting in equations that are generally 
different from those for the one component 
problem. 

As an illustrative example, let usPchoose the 
case where the dissolving molecule, A ,  reacts 
with an additive molecule, B, present in the sol- 
vent to form a complex, AB, according to d + 
B = A.B,  with 

Assume that equilibrium is rapid compared to 
diffusion over distances of importance (‘‘film’’ 
thickness, packet dimensions, etc.). This is a 
reasonable assumption for most acid-base reac- 
tions and for most interactions leading to com- 
plex formation. Assume also that no new phases 
may precipitate. Then the diffusion layer 
theory gives for this situation (19-21) 

(Eq. 12) 

DA, DB, and DAB are the diffusion coefficients 
for A ,  B,  and AB.  A. and Ah are the concentra- 
tions of A at x = 0 and x = h. Bh is the con- 
centration of B in the solvent (x 5 h).  

Physically the situation regarding the species 
leading to Ey. 12 may be described as follows. 
Species A is diffusing from x = 0, where A. = 
solubility of A ,  to x = h, whereA = Ah. Species 
B diffuses in the opposite direction from x = h, 
where B = Bh, to x = 0. Along the way B com- 
plexes with A according to Eq. 11 and the com- 
plex A . B diffuses out along with free A in the 
same direction as A.  The net effect is a “facilita- 
tion” of the transport of A into solution, resulting 
in the factor 

multiplying the rate given by Eq. 1. 
The Danckwerts theory does not give dif- 

ferential equations that can be solved analytically 
for the situation (19) involving this equilibrium 
between A, B,  and A.B.  However, Olander 
has solved the special case, when D A  = DR = 
DA .B = D ,  in which 

It is noteworthy that, when DA = DB = D, I) = 
D, the diffusion layer theory (Eq. 12) retliices to 

As Olander points out (20), Eqs. 13 and 14 are 
identical except for the dependence on D and 
the hydrodynamics. It is further noteworthy 
that both Eqs. 13 and 14 reduce to Eqs. 1 and 2, 
respectively, if one notes that 

L -k i1 (Eq.15) 

where C, - C is the “total” concentration dif- 
ferential for A between the solid-solvent inter- 
face and the bulk solvent. 

It folIows from the above that, when all the 
diffusion coefficients are equal, the Noyes- 
Whitney law should apply regardless of whether 
the diffusion layer theory or the Danckwerts 
theory is appropriate. These conclusions are 
not restricted to the reaction, A + B = A * B. 
Situations involving other kinds of equilibria 
have also been worked out (19-21). Because 
the diffusion coefficients of molecules and ions 
vary approximately as the cube root of the molec- 
ular weight, the Noyes-Whitney law should be 
frequently applicable as long as interfacial 
barrier effects or the precipitation of new phases 
are absent. Extensive experimental studies 
by Nelson (22, 23) and by Hamlin et al. (24) 
substantiate this. 

Situations where significant deviations from 
the Noyes-Whitney law should occur, except 
when phase changes take place, are those in- 
volving either very small or very large diffusion 
coefficients. A case in point is the dissolution 
rate behavior of a basic amine drug in HC1 solu- 
tions (25) .  Here the large diffusion coefficient 
of the HC1 apparently caused the dissolution 
rate to be as much as 3 times greater than the 
Noyes-Whitney law predictions. 

The studies by Desai et al. (10) on the initial 
dissolution rate behavior of benzocaine in aqueous 
polysorbate SO2 solutions are particularly note- 
worthy. Their experiments carried out under 
constant hydrodynamic conditions provided 
data that could be used to simultaneously test 
the difiusion layer theory, the Danckwerts theory, 
and the Noyes-Whitney law. For this situation 
the diffusion layer theory gives the following 
equation (10, 26) 

where I l l  is the diffusion coefficient of the miccllc- 
2 Moi-keted as Twepn 80 by Allas Cliernicai lmlmstr.im, 

Wilmington, I ) d .  
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solubilized drug and Csl is thc solubility in- 
crease due to solubilization. All other terms 
are the same as in Eq. 1. 

In contrast to Eq. 16, Danckwerts theory (10) 
leads to the following equation for the dissolu- 
tion rate of benzocaine in polysorbate solutions. 

G = S'/2 X z / ( C 8  + Cl,)(DC, + D'C',) (Eq. 17) 

The symbols have the same meanings as before. 

we have for this situation 
Finally, according to the Noyes-Whitney law, 

(Eq. 18) 

The comparison of the experimental data with 
Eqs. 16, 17, and 18 is shown in Fig. 2.  Clearly, 
in this example, the diffusion layer theory agrees 
best with the experimental data. Both Eqs. 17 
and 18 show discrepancies with data that are 
far greater than the scatter of the data. 

G = constant x(Cs + Cl,) 

1 . 0  

0.8 

0.6 
a 

0 . 4  

0.2 

\ 
....... .. . ..._. 

'._ '.. v-\., '". 
\ ".. ... 

-.-.-._ -.-. \ -,-. '. 
1. .. 

L 

1 2 3 4 5 6  
CONCN. OF POLYSORBATE. Gm./100 ml. 

Fig. 2-Data and theory on  the injtuence of poly- 
sorbate 80 solubilization on the dissolution rate behavior 
of benzocaine. R i s  ratio of rate in polysorbate solution 
to that without polysovbate (from Desai et al.). Key:  
-___ , experimental; . ' . . . . . ., diffusion layer 
theory;- . - . - , Danckwerts theory; - - - - -, Noyes- 

TVhitney theory. 

The reviewer believes that studies by Desai 
et al. represent the first clear-cut demonstration 
of mechanism differentiation. This technique 
should have extensive application in the future- 
particularly in studying the effects of hydrody- 
namic factors on mechanisms. 

Some Comments on the Influence of Addi- 
tives at the Interface-An interfacially ad- 
sorbing agent may help in increasing the dis- 
solution rate. A surfactant may improve the 
wetting of the surface and effectively increase 
the available area (27, 28). It may also in- 
crease the interfacial rate constant k< (Eq. 3 )  
by assisting in the release of surface molecules 
through interfacial tension lowering. 

Surface-active agents may play other roles. 
For example, the formation of a surface ad- 
sorbed layer of aliphatic long chain ammonium 
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ions retards the dissolution rate of apatite 
crystals (29). Also it is expected on theoretical 
grounds (30) that for very water insoluble drugs 
(C, 2 Gm. ml-1) the intrinsic rate of 
micellar solubilization of a drug may be very low, 
and the dissolution rate may be much slower 
than that predicted by Eq. 16. This might 
occur if, for example, the surfactant micelles 
have the same charge as the crystal surface 
(due to, say, the adsorbed surfactant), and the 
close approach of the micelle to the surface is 
improbable. 

Dissolution Rates Involving Simultaneous 
Phase Changes-There have been a number 
of reports in the literature (31, 32) where the 
formation of a new surface phase was noted 
during the dissolution of the drug. In- 
variably the formation of such phases leads 
to slower dissolution rates than if i t  did not 
occur. 

The physical model approach involving the 
consideration of simultaneous diffusion, chemical 
equilibria, and new phase precipitation has now 
been employed in a number of instances. The 
dissolution rate behavior in phosphate buffers 
of the sodium salt of a relatively water-insoluble 
weak acid drug was analyzed (33) by this tech- 
nique. The data were found to be consistent 
with the model in which a surface coating of the 
weak acid was formed under certain conditions. 

The pamoate salt of an amine drug forms a 
coating of pamoic acid during its dissolution in 
HC1 solutions (32). Assuming that the dif- 
fusion of the protonated amine through this 
coating is rate determining, a model was con- 
structed and compared to data (34). 

The dissolution rate behavior of apatites is 
important because of its relation to bone and 
tooth mineral dynamics (35, 36). The pos- 
sibility of dicalcium phosphate surface phase 
deposition during apatite dissolution in aqueous 
lactate buffers was considered (35). More 
recently (37, 38) the influence of the fluoride ion 
on the dissolution rate behavior of apatites 
has been examined by means of models involv- 
ing surface phases of fluorapatite and CaF2. The 
questions of what effects phosphate, calcium, and 
fluoride ions and pH have on these mechanisms 
are being answered by these models and the 
appropriate experiments. 

Recently Bernard0 (39) examined the problem 
of the anomalous dissolution rate behavior (40) 
of the polymorphs of methylprednisolone. A 
model was considered in which it was assumed 
that simultaneous surface reversion of poly- 
morph I1 (the higher energy one) to polymorph I 
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occurred during the dissolution of polymorph 11. 
This led to equations which were consistent with 
the experimental observation that at high stir- 
ring rates the dissolution rates for forms I and I1 
were indistinguishable. 

Dissolution Rates from Mixtures-Re- 
cently a mathematical analysis based on a 
physical model was presented (41) to describe 
the dissolution rate behavior of polyphase mix- 
tures. For a two phase mixture in which the 
two components, A and B, do not interact in 
any way with each other, we may describe the 
model in the following way. Upon exposure to 
solvent, both components of the mixture should 
tend to dissolve at  rates proportional to their 
solubilities and their diffusion coefficients. After 
some time, usually one of the phases would be- 
come depleted at the solid-liquid interface region 
because NA/NB may not be equal to (DACsA)/ 
(DBCSB), where NA and NB are the original 
amounts of A and B in the mixture, DA and DB 
are the diffusion coefficients, and CsA and CSB 
are the respective solubilities. As a result, a 
surface layer is formed that is composed of only 
one of the phases. The three possible situa- 
tions after zero time are illustrated in Fig. 3 
for the one-dimensional, two-phase mixture 
problem. 

CASE A C A S E B  C A S E C  

Fig. ~ - D ~ s s o ~ u -  
tion behavior ,of 
two-phase mm- 
ture of A and B. 
In  case A, phase 
B dissolves fas t  
enough to leave a 
layer of pure A 
behind; an case 
B, the reverse i s  
true; while in 
case C, dissolu- 
tion rates of A 
and B are pro- 
portional to their 
relative amounts 
in the mixture. 

The following dissolution rate equations based 
on this model were derived3 for each of the situa- 
tions given in Fig. 3. 

When 

N A I N B  > (DACSA)/ (DBCSB) ,  

and 

GB = - G A  
N A  N~ J 

3 While the diffusion layer theory was used to express the 
dissolution rate behavior of the surface phases in Eqs. 19-21, 
the Danckwei-ts theory could have been used instead. 

When 

N A / N B  < ( I~ACSA) / (DBC,SB) ,  

and 

N A  
N B  GA = - GB 

When 

DACSA GA = - 

and \ 

Equations 19-21 were applied (41) to the data 
on benzoic acid-salicylic acid tablet mixtures 
dissolving in water. Excellent agreement be- 
tween data and theory was found in this case. 

The above equations have a restriction in that 
they are quantitatively applicable in the steady 
state only. This requires that the CSA and CsB 
do not differ too greatly, say no more than a 
factor of 100 if, for example, the tablet thickness 
is on the order of millimeters. 

If one of the components is very much less 
soluble than the other, i e . ,  if either CsA/ 
CSB --t 0 or m , then the problem reduces to that 
of solute release from an inert matrix which is dis- 
cussed under Drug Release Out of Matrix Systems. 
The intermediate ranges have been treated also 

This two-phase model has been extended (41) 
to the case in which the components, A and B,  
may interact to form a complex, A . B, in solu- 
tion. The resulting equations for this case very 
nicely agreed with data on the dissolution rate 
behavior of caffeine-benzocaine mixtures in 
water. The same basic model was used (39) 
to derive equations that accurately described the 
dissolution rate behavior of mixtures of different 
crystalline forms of drugs. Experimental data 
with sulfathiazole forms I and I1 and with 
methylprednisolone polymorphs agreed well with 
the theory. The model was also employed in the 
re-examination of Nelson's data (42) on the 
dissolution rate behavior of benzoic acid-tri- 
sodium phosphate mixtures in water. 

The simple nature of this model should allow 
extension to mixture problems involving more 
than two phases. 

DRUG RELEASE OUT OF MATRIX SYSTEMS 

General Considerations-This portion of the 

(41). 
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review4 is concerned with drug release problems 
in which the external geometry of the dosage 
form remains essentially unchanged during drug 
release. Therefore, cases in this category in- 
clude drug release from ointments, nondisinte- 
grating tableted matrices, and perhaps from in- 
jections of the depot type. The discussion is 
directed toward the recent in vitro type work 
where attempts have been primarily made to 
understand the roles played by those factors as- 
sociated with the dosage form itself. The 
question of whether conclusions from studies 
such as these truly reflect the in vivo availability 
is not under scrutiny here. 

Special mention should be made that the most 
significant applications of the physical model 
approach in this area in recent times are those 
presented in the reports by T. Higuchi (4447). 
These studies form the basis for much of the 
discussion here. They are also reflected in much 
of the thinking and research being done today on 
diffusion controlled release of drugs. 

Diffusion Controlled Solute Release Obey- 
ing Fick’s Law-When Fick’s law is obeyed, 
the diffusion coefficient, D ,  is constant. For 
the one-dimensional diffusion of a single solute, 
we may write 

A ,  

2 u z 
0 u 
(II 
3 

n 
a -I 
I- 
0 
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0 < z < h. It is noteworthy that the slopes of 
these curves a t  x = 0 give the rate of release at 
the various times, is., 

Here C is the solute concentration at time t and 
at position x. 

Various mathematical solutions to Eq. 22 have 
provided useful quantitative methods for studying 
the drug release problem. For planar diffusion 
to a perfect sink at x = 0 from a region, 0 L x 
L h, at a uniform initial (t = 0) concentration of 
CO, the solution to Eq. 22 is (45, 48-50) 

where Q = amount of drug released to the sink 
per unit area. It can be shown (51) that Eq. 23 
may be approximated rather well by Eq. 24 up 
to about 30 to 50% drug release, 

where Eq. 24 is the solution to the case for h a t  
infinity. 

Figure 4 shows how the drug concentration 
profiles may change with time in the region, 
‘ The readers are referred to an earlier review (43) on this 

subject for background. 

and may be obtained by simply differentiating 
Eqs. 23 or 24 with times. 

x = o  x = h  

2 
V z 
0 
0 
(II 
3 
LT 
n 

x = o  x = h  

Fig. &Concentration projiles for the two situations 
during drug release to a perfect sink. Solid in matrix 

( top);  solution in matrix (bottom). 

I t  can be seen that if D is known we may easily 
predict the release rate behavior by means of 
Eqs. 23-25. While D may always be determined 
experimentally, it  is of interest from :he mech- 
anism standpoint to consider the various 
theoretical methods for predicting D for the 
different situations. 

First of all, there is the well known Stokes- 
Einstein relation, 

kT 
67rna 

D =  ~ 

where k is the Boltzmann constant, T is tempera- 
ture, n is the viscosity of the matrix, and a is the 
hydrodynamic radius of the diffusing drug 
molecule. This equation is practically quanti- 
tatively applicable when the matrix is composed 
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and pyridine hydrochloride to be discussed later. 
Higuchi analyzed data on drug release from 

oil-in-water emulsions. Good consistency of the 
data (G2) with Eqs. 23 and 24 and with the 
Higuchi mixture formula (52) was found in this 
instance. 

Drug release from inert plastic matrices 
initially saturated with a drug solution of con- 
centration, C,, may follow equations similar to 
Eqs. 23 and 24. Here, for example, instead of 
Eq. 24 we may write (54) 

o f  solvent molecules that are comparable to or 
smaller than the diffusing drug molecules so 
that the microscopic viscosity is close to the 
macroscopic viscosity. The case when the 
situation is reversed, i e . ,  drug diffusion out of 
polymer solutions or gels, will be discussed later. 

The meaning of D when the matrix is hetero- 
geneous has received much attention recently 
(51-57). A number of approximate relation- 
ships have been considered and compared with 
experimental data. 

When the matrix is a suspension or an emulsion, 
the effective diffusion coefficient, D,, must be 
used instead of D in Eqs. 23 and 24. D, may be 
obtained from mixture formulas based on 
analogous electrostatic situations (52, 58-G1). 
Equations 27 and 28 are, respectively, the 
Bruggeman (59) and the Maxwell-Rayleigh- 
Lorentz-Clausius-Mosotti-Wagner-Wiener rela- 
tions for the effective permeability constant, 
P,, for a two-phase system consisting of an 
internal phase of spherical particles dispersed in 
a continuous phase. 

and 

Here the P’s are the permeability constants and 
the v‘s are the volume fractions of the phases. 
The subscripts i and c refer to the internal phase 
and the continuous phase, respectively. Equa- 
tions 27 and 28 are the two most popular mixture 
formulas discussed in the literature. Other 
formulas are available (52) ,  including those 
which take into account shape effects and the 
effects of a “coating” of the internal phase. 
Higuchi (52) considered a semiquantitative mix- 
ture relationship that correlated well with litera- 
ture data. 

Now D. may be calculated (52, 53) with either 
Eqs. 27 or 28 if we note further that 

(Eq. 29) 
P D,  = F: 

and 

K ,  = KiVi + V, (E4. 30) 

where ICi is the partition coefficient of the solute 
between the internal and the external phases. 

Koizumi (53) has tested Eqs. 23 and 24 and 
27-30 with data on pyridine release from water- 
in-oil emulsions into an aqueous sink. Agree- 
ment of both Eqs. 27 and 28 with data was satis- 
factory. However, Koizumi’s more critical tests 
were carried out with solute mixtures of pyridine 

where e = V, = porosity, and T = tortuosity. 
The quantity T may be calculated by means of 
Eqs. 27 or 28 if the internal phase particles are 
spherical and impermeable. Thus, if l i i  = V ,  
= 0.5, we get P,  = O.35Pc and T = 1.43, ac- 
cording to Eq. 27, and P,  = 0.4OPc and r = 

1.25 according to Eq. 28. The Higuchi mixture 
formula (52) gives P, = O.35Pc and T = 1.43 
for this situation. 

Desai et al. (55) employing Eq. 31 found experi- 
mental r values mainly in the range of 1.3 to 
3.0 for polyvinyl chloride compressed tablet 
matrices when Vi ‘V 0.60 to 0.70. This is in 
very good agreement with the expected values 
of about 1.4 to 2.0 according to Eqs. 27, 28, and 
the Iliguchi formula (52). When polyethylene 
plastic tablet matrices were used (55),5 higher 
T values of 6 to 10 were found. This difference 
in general behavior has been explained (55) on 
the basis of the much greater plasticity of the 
polyethylene and the much greater elasticity of 
the polyvinyl chloride influencing the structures of 
their respective matrices when the materials are 
subjected to compaction. 

It is worthwhile to point out that both Eqs. 
27 and 28 lead to Eq. 32 when Vi is small. 

(Eq. 32) 

This equation is not only useful in estimating 
accurate values of D, for dilute suspensions and 
emulsions but also when the matrix is a dilute 
polymer solution or a gel. 

If a gel forming polymer does not bind the drug 
but acts only to provide some ‘‘mechanical” re- 
sistance to drug diffusion, Eq. 22 becomes 

3 
D ,  = D2 VC (1  - Vi )  (Eq. 33) 

Equation 33 appears to accurately describe (63) 

6 See also Desai, S. J., Ph.D. thesis, University of Michigan, 
Ann Arbor, Micb., 1966. 
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the diffusion of sodium and cesium ions in 
aqueous agar gels. 

Suppose a viscous but dilute polymer solution 
is the matrix with the polymer binding the drug 
according to a linear law, i.e., 

M = koC, (Eq. 34) 

where M = amount of drug bound per unit 
volume of polymer, C, = concentration of the 
drug in the “continuous” phase, and ko = con- 
stant. Then Eq. 32 should be used with Di = 
0 and 
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(Eq. 3 5 )  M 
c c  

K .  - - 
2 -  

If the binding does not obey Eq. 34, then Fick’s 
law will not be obeyed and other methods must 
be considered. (See under Diffusion Controlled 
Release Not Obeying Fick’s Law.) 

If a suspension type matrix with D ,  = 0 is 
able to adsorb drug according to a linear relation 
similar to Eq. 34, then equations analogous to 
34 and 35 may be used (43) with Eqs. 32, 27, or 
28 and Q calculated with Eqs. 23 or 24. Again 
if the adsorption isotherm is not linear, then the 
mathematics cannot be handled analytically and 
numerical methods become necessary. (See 
under Diffusion Controlled Release Not Obeying 
Fick’s Law.) 

In all of the preceding discussion involving Eqs. 
23 and 24 and the mixture relations, Eqs. 27-30, 
we have assumed that local equilibrium (52) 
is maintained, i.e., partitioning or binding occurs 
rapidly. If local equilibrium is not maintained 
the equations may not be correct. In this 
connection, Koizumi (64) has theoretically 
treated the case where the rate of oil-water inter- 
facial transport becomes important in influencing 
the rate of drug release from emulsions. It 
appears safe to state (52) that in most situations 
the assumption of local equilibrium will be a good 
one for the small particle sizes normally involved 
in most emulsions. 

Diffusion Controlled Release Not Obeying 
Fick’s Law-For many situations in drug 
release rate problems, Eq. 22 alone cannot 
describe the process. In the following we shall 
consider some of those cases that have been 
studied. 

Diffusion controlled drug release when the drug 
is dispersed as a solid in a matrix was first studied 
by Higuchi (45-47). If the matrix is a homo- 
geneous liquid, the one-dimensional theory 
(planar release) gives 

Q = 4 s C i ) C t  (Eq. 36) 

where D is the drug molecule diffusion coefficient 
in the matrix, A is the total amount of drug 
present in the matrix per unit volume, and C, is 

the solubility of the drug in the matrix substance. 
If the matrix is heterogeneous and diffusion 

takes place in the intergranular pores, e. g., drug 
dispersed in an inert plastic matrix with aqueous 
pores, instead of Eq. 36 we get 

Q = 4% (2A - eCs)C,t (Eq. 3 7 )  

where D is the diffusion coefficient in the solvent, 
E = porosity of the matrix, and T ,  as before, is the 
tortuosity. 

Figure 4 shows the drug concentration pro- 
files in the matrix a t  different times in accordance 
with the theory leading to Eqs. 36 and 3i. 
The concentration gradients from the solid-drug 
boundary (x = s) to the matrix boundary (x = 
0) are linear as long as 2A >> C, (for Eq. 36) 
or eCs << 2A (for Eq. 37) which is the key as- 
sumption in the derivation of these two equations. 

Desai et al. (54, 55) and Singh et al. (56) have 
made extensive experimental and further theoreti- 
cal studies of Eq. 37. In their approach several 
different plastics and several drugs were involved. 
They independently determined the appropriate 
D (diffusion cell experiments), the solubility C,, 
the appropriate E (two ways), and r by an inde- 
pendent experiment with the same matrix utiliz- 
ing Eq. 31. Under the expected conditions 
(good penetration of the pores and when EC., << 
2A) Eq. 37 agreed quantitatively with the experi- 
mental data over a wide range of variables. 

These investigators also showed (55) that in 
some instances (polyethylene matrices without 
surfactant in the solvent) wetting may be poor 
and therefore the effective T values may be in the 
tens of thousands. More recent studies (56) 
show that in these cases the diffusion controlled 
model probably fails, and the release rate is 
determined by the channel penetration rate of 
the solvent. In other instances (polyvinyl 
chloride matrices in water) wetting was efficient, 
but air removal from the matrix significantly 
altered the drug release pattern. 

Desai et al. (55) have extended Eq. 37 to take 
into account the hydrodynamic flow of the solvent 
in the pores. This refinement was necessary to 
explain the behavior of moderately soluble 
solutes. 

These investigators have also further extended 
the same model taking into account the effect of 
a concentration dependent D and the possibility 
of linear binding of the drug onto the plastic 
during the release of drug. 

Very recently Singh el al. (56) extended the 
theory to describe the release from mixtures of 
drugs in an inert matrix. They have derived 
equations which also take into account the 
possibility of complex formation between the 
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components of the phases. The theory is being 
used to evaluate the data on mixtures currently 
being gathered in these laboratories. 

A very important situation where Eq. 22 fails 
is in the release of drugs when the partition coef- 
ficient, Ki (see Eqs. 30 and 35), is not constant but 
is dependent on the drug concentration. Kc may 
vary with drug concentration if (a) the drug is a 
weak acid or a weak base and therefore Ki would 
be pH dependent, (b)  the drug molecule associates 
as carboxylic acids do in mineral oil, or (c) the 
drug binds or complexes according to some non- 
linear law, e .g . ,  Langmuir binding, to some 
component in the system. 

Koizumi (53) has investigated the theoretical 
and experimental methods for handling this 
situation. By applying Boltzmann's method 
(48,49) and employing Eqs. 27 and 28, he numeri- 
cally computed the drug release rates from 
emulsions into aqueous sinks when Eq. 37 
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at = & (D g) (Eq.37) 

rather than Eq. 22 was obeyed. The theoretical 
predictions agreed very well with experimental 
data on the release of solute from pyridine- 
pyridine hydrochloride solute mixtures in water- 
in-oil emulsions. As expected, the Bruggeman 
Eq. 27 agreed better with the data than Eq. 26 
over a wide range of the solute mixture ratio. 
The agreement of theory with data was partic- 
ularly significant because all parameters enter- 
ing into the theory were determined inde- 
pendently of the rate experiments themselves. 

Koizumi also investigated theoretically and 
experimentally the effect of a membrane (e.g., 
cellophane) separating the emulsion from the 
aqueous sink. This is an important practical 
factor in many in vitro experimental methods. 
This modification gave better agreement of the 
data with theory under certain expected condi- 
tions. 

The reviewer believes that with the use of such 
numerical methods in conjunction with modern 
computers there is practically no problem that is 
inaccessible to theoretical analysis. There will 
be many examples of such attacks on diffusion 
problems in the future. 
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