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Exploring Thermodynamics 

 
I.  Thermo-Physics 

 
1. Introduction.  Thermodynamics is the study of energy change.  It is 

concerned with the equilibrium states of a system, and not by the path with which 
the system arrives at these states.  Yet, once a specific material is selected for the 
system, how that materials state variables (pressure, volume, temperature, etc.) 
relate to its equilibrium states, and the work done to move between these states, 
are also of interest.  State variable relationships and work-energy relationships, in 
some cases, depend on specific processes undergone by the system (path 
functions), and in other cases depend only on the initial and final states of the 
system (point functions, or state functions), not on how the system arrives at its 
final state. 
 

The seeds of thermodynamics, in this authors’ opinion, were planted by the 
engineers first concerned with the dream of a heat engine.  The dream was to 
create a device, which would in one cycle, consume a quantity of heat and 
produce an equal quantity of work.  Today, although we understand that it is 
impossible to produce an EQUAL amount of work, the study of this “heat to work” 
energy conversion creates the basis of the science of classical thermodynamics. 
 

It is possible to derive the concepts of thermodynamics entirely by sound 
mathematical reasoning, and many authors do so.  Here, we will attempt to 
include physical models, both MACRO and MICRO, to impart a deeper 
understanding of the topic. 
 
 We start with a brief discussion of temperature  
 
 2. Temperature.  One can hardly hear the word thermodynamics with out 
seeing a thermometer in one's mind.  Truly, this device is fundamental in the 
experimental world of heat.  But rarely do we consider what the device is actually 
measuring.  Here, we will explore that question. 
   

The name of Gabriel Fahrenheit (1686-1736) is associated with temperature 
in the minds of most people.  Fahrenheit, a medical doctor, explored the 
correlation between a patients’ state of health and the value of the temperature.  
There was no well-established temperature scale at that time, and Fahrenheit was 
attempting to discover an integer numerical scale, which would correlate to the 
various afflictions of the human body.  Early in his experiments, Fahrenheit saw 
the need for the establishment of reputable temperature standards, which could 
be used to calibrate his thermometer.  Mouth of a healthy male, the freezing point 
of water, the freezing point of a saturated ice-salt bath (still zero F today), and the 
boiling point of water were among some of the reference points he explored.  The 
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numerical values on his thermometer underwent many revisions over the years he 
experimented and these numerical values have NO BASIS in science.  They were 
merely assigned. 

 
Carolus Linnaeus (1707-1778), a professor of physics, astronomy, and 

botany at the University of Upsula, is in fact the inventor of the temperature scale 
that uses as its temperature standards, the freezing point and boiling point of 
pure water, and subdivides that range into 100%.  Zero was assigned to freezing 
water and 100 assigned to boiling water.  The scale was named Centigrade 
(indicating "centi" or one hundred graduations between the two references).  It was 
around 1968, when System International mistakenly renamed the centigrade unit 
as Celsius.  Celsius was an astronomer at the same university.  It is assumed that 
because of the roman numerical C on the scale, taken for the letter C, that Celsius 
was erroneously credited with the invention of the scale.  It is important to 
understand that like the Fahrenheit scale, the number values on the "Celsius 
|Linnaeus" scale have no basis in science.  They were assigned. 

 
It was J. Charles (1748-1823) whom was to discover the "absolute" scale 

although he would not realize the true impact of that discovery.  Charles was 
experimenting to determine the temperature vs. volume relationship of a gas.  He 
discovered through experiment that, for all other variables held constant, the 
volume occupied by a gas was proportional to the temperature of a gas.  The 
relationship was linear.  To mathematically express this relationship, the slope 
intercept form of a straight line (V= mT + b) may be used.  This equation was 
cumbersome to Charles since one cannot do ratio and proportion when there is an 
additive constant (b).  Thus, great was his surprise when he discovered that for 
ALL gasses, when their volume temperature relationships are extrapolated toward 
lower temperatures, they have the SAME horizontal (T) intercept.  On the 
centigrade scale, this value is -273 C.  Charles and others then adopted a new 
(absolute) scale which placed its zero at -273 C for the sole purpose of removing 
the additive constant (b=0) from the linear relationship.  Charles would not 
understand the full significance of this discovery.  The discovery would remain for 
Lord Kelvin, after which the scale is named. 

 
What then does a thermometer measure?  Consider a thermometer made 

with a small hollow glass bulb (the probe) connected by a rigid hose to a U-tube 
manometer containing a liquid inside (the scale readout).  The remainder of the 
apparatus is filled with a gas.  We put the probe in a gas environment to measure 
its temperature.  The observed effect is a shift in the liquid inside the manometer.  
We measure the height difference and assign it a temperature value.  Let us now 
examine this situation from a micro point of view. 

  
The gas for which we seek its temperature consists of many molecules 

moving with random speeds and in random directions.  Some of these molecules 
strike our thermometer probe. In doing so, the collision transfers kinetic energy of 
the molecules center of mass to the probe.  The probe accepts this energy by 
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increasing the amplitude of vibration of the molecules from which it is made.  
None of the incident gas molecules’ rotational energy however is transferred to the 
probe since that would require them to apply a torque on the probe molecules and 
angularly displace them, changing their rotational speeds.  The probe molecules 
are rigidly bound in solid form.  The now increased energy contained in the 
amplitude of vibration in the probe molecules is delivered to the gas contained 
within the probe by the same mechanism discussed.  Thus, the kinetic energy of 
the gas within the thermometer is increased.  These internal gas molecules, now 
moving faster, impact the liquid surface of the manometer and their change in 
momentum supplies an increased force to the liquid that causes the liquid height 
difference to increase.  We call it temperature.  It would appear that what we have 
measured is related to the average translational kinetic energy of the particles of 
gas.  This is what the thermometer measures: this is temperature. This definition 
has a basis in science. 

 
From the above perspective, the lowest temperature that one may conceive 

would occur when all the particles are at a relative speed of zero with respect to 
the thermometer; that is when the average kinetic energy of all the particles is 
zero.  This is absolute zero, -273 C, or Zero Kelvin as we call it today.  Lord Kelvin 
is accredited with the explanation. 

 
Only the zero point on the Kelvin scale has basis in science, the remainder 

of the scale is simply assigned. 
 

 3. Work.  Work is defined in physics as the accomplishment of a task.  
Mathematically, it is computed by 

∫ •= xdFWork rr
 

It is the scalar product of a force times a distance.  It is learned in physics that 
work is a path function since the value of work depends on how the force varies 
along the displacement path.  In a beginning physics class, the student is likely to 
associate work with a change in kinetic energy.  Formally, work done by the net 
force on an object of constant mass is equal to the change in kinetic energy of the 
objects center of mass. 

cmByFnet KEWork ∆=  
From this fundamental relationship, the student first encounters the point 
function of kinetic energy.   
 

In thermodynamics however, especially when analyzing a heat engine, the 
work done by an expanding gas is of more general concern.  This work, often 
called expansion work, is better represented in terms of pressure and volume 
rather than in terms of force and displacement. 

Consider a gas confined in a cylinder with a movable piston.  Let the piston 
displace to the right by an increment dx against the external force Fexternal. 
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Figure 1.  Gas contained in a cylinder with movable piston. 

 
 

The expansion work is given by: 
 

∫ ∫∫ −=−=•= dVPAdxPxdFW exexex
vv

 

 
The minus sign is necessary because the direction of dx is opposite that of Fexternal.   
 
The above result is often adapted further by restricting the expansion to a 
reversible equilibrium expansion.  That is, the pressure of the gas contained within 
the cylinder is assumed nearly equal to the external pressure opposing the 
expansion, Pgas = -Pex.  With this assumption, the Expansion Work becomes, 

∫= dVPW gas  

The minus sign is lost since the force of the gas is in the direction of the increase 
in volume, dV.   
 
     It should be seen that although the above discussion was based on an 
expanding gas, no equation of state was incorporated.  The work relationship is 
thus valid for any expanding material; solid, liquid, or gas.    
 
     It is often useful to plot pressure as a function of volume to visualize a given 
process.  The area bounded under such a plot is the work done in that process. 
 
  

Work 
 
 
 

   
Figure 2.  Constant pressure process showing expansion

 
For a process of constant pressure, the p

integral as constant and the resulting work fun
VPW gas∆=

 
4. Heat.  It was originally said, “Heat is 

result of a temperature difference alone”.  At th
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 work as the area under the P vs. V graph. 

ressure can be removed from the 
ction becomes, 

 

that which can be made to flow as a 
at time in history, heat was 



misunderstood as being a fluid, due to the fact that its “flow” was describable with 
equations derived for fluid flow.  In the early 1800’s, it was found by Count 
Rumford (a.k.a. Benjamin Thompson, 1753-1814) that heat and work were 
related.  Heat was not a fluid but a form of work.  Experimental results showed 
that work could be converted into an equal amount of heat (although for the 
reverse conversion, this is not possible).   The terminology of “flow” is however 
often retained.   Today, we may expand this statement to: heat is that fraction of 
the total microscopic energy of a collection of particles, which can be made to 
transfer as a result of a temperature difference alone.   This flow or transfer does 
not necessarily imply that matter must displace from one point to another.  It is 
Energy that transfers.  Heat is a form of work; it is MICRO Work.  Objects do not 
“have” heat but rather heat enters or leaves an object.  Heat implies a process; it 
is not a state of being. 

 
Heat is often associated with temperature change using the relationship, 

TcnQ ∆=   
 
where n is the amount of material and c is the specific heat capacity for the 
material.  (It should be pointed out here that while the relationship TcnQ ∆=   is 
valid for many processes, it is not necessary for a system to change temperature 
in order to accept or reject heat.)   

The specific heat capacity, or “specific heat” ( c ) is an experimentally 
measured constant.  In both the calorie and BTU systems of energy measurement, 
the specific heat of water is assigned the value of unity. 
 

FLb
BTU

Cgram
calC liqOH •

≡
•

≡ 11C 15@,2
 

 
Specific heat values for other materials are found from experiment similar to the 
following. 
 

Example.  Consider a metal object of mass 20 grams and initially at 100C.  
This object is placed in a well-insulated container (of negligible mass and 
small specific heat) containing 100 grams of liquid water at 25 C.  The 
mixture is allowed to reach a new equilibrium temperature, measured at 28 
C.   We apply conservation of heat energy to the process Heat lost (-) by the 
hot metal must equal the heat gained (+) by the cooler water. 

0=+ watermetal QQ  
( ) ( ) 0Tc  nTc  n metal =∆+∆ water  

02528
C g

cal (1 10010028c g) (20 metal =−+− CgC ))()()(  

Cmetal=.208 cal/g C 
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5. Internal Energy.  If objects do not “have” heat, then what do they have?  
It is called Internal Energy (or thermal energy).  Internal Energy is the total MICRO 
energy (kinetic, rotational, vibrational, etc.) of a collection of particles; the ability of 
those particles to do work by virtue of their microscopic speeds and 
configurations.  Internal energy is what a system “has”, and is what changes when 
heat only is added to an object.  This total micro energy is never computed; only 
changes in Internal Energy are computed.  It will be shown that Internal Energy is 
a condition of state, a point function, and does not depend on the path used to 
arrive at that state.    

 
6. First Law of Thermodynamics.  The first law of thermodynamics is an 

accounting relationship between work (W), heat (Q), and a systems change in 
internal energy (∆U).  In business accounting, there are many ways that a 
business may choose to organize its various accounts.  This is also true in the 
science of thermodynamics.  Chemists, Physicists, and various engineering fields 
have used various methods to classify these quantities and relationships.  So 
much so that without a detailed breakdown of the symbols and sign convention, it 
becomes difficult for people well versed in thermodynamics to communicate.  
Attempts have been made to standardize symbols and sign convention.  These 
attempts for the most part have resulted in further divergence and confusion.  
Here, the more traditional sign conventions and symbols will be used.  We will 
adopt the sign convention, which was used by the engineers who had the dream of 
the heat engine.  Heat will be Positive when entering the system.  Work will be 
positive when the system does work on its surroundings. 

 

+W +Q 
∆U  

 
 
 

Figure 3.  Schematic representation of the first law of thermodynamics. 

 
Consider a system of constant mass.  We wish to put heat into this system 

(positive) and to extract useful work out of this system (also positive).   
 
 
 
 
 
The First Law of Thermodynamics becomes: 

 

dwdqdU

WQU

−=

−=∆
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The heat into the system, minus the work out of the system, equals the change in 
internal energy of the system.  This is an accounting principle.  The first law does 
not dictate that a process is possible, it only keeps track of the work, heat, and 
energy changes. 
 It is important to remind ourselves that both Q and W are path functions.  
Their substitution will depend on the details of the process under consideration.  
The change in Internal Energy on the other hand, is a point function.  ∆U depends 
only on the initial and final states and not on the path or process that connects 
them.  This statement is verified in a later section. 
 
 7. The Gas Equation of State.  To realize further relationships for 
processes, which accept heat and produce work, an equation relating the state 
variables of our material must be acquired.  In the discussions to follow, we will 
assume that our material is a gas.  This choice is made because the state equation 
for a gas is mathematically simpler than that of solids and liquids.  We will adopt 
the Ideal Gas Law as our equation of state.  
 
The ideal gas law is given by:  
 
 

nRTPV =  
 
where: 
 

P is the absolute pressure of the gas, 
V is the volume of the container holding the gas molecules, 
n is the number of moles of gas molecules, 
R is the universal gas constant {8.314 J/(mol K) , .08205 (liter atm)/(mol K), 
etc}, 
T is the absolute Kelvin temperature. 

 
 The origin of the ideal gas law lies in the empirical studies of Boyle, Charles, 
and Gay-Lussac.  Their experiments involved holding all but two quantities 
constant, and seeing how the remaining two variables were related. 
 
         The ideal gas law defines a surface in P, V, T space.  An ideal gas can only 
exist on this surface.  The following figure illustrates this surface. 
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P 

T 

V 

 
Figure 4. Illustration of the surface defined by the ideal gas law.   

Shown are dashed lines of constant temperature. 
 

 
The properties of an "ideal gas" are: 

• That it consists of identical particles in random motion. 
• That there are a large number of particles. 
• The volume of a particle is ZERO. 
• No external force acts on the collection of particles other than the force 

exerted by the walls of the container. 
• F=ma is obeyed, collisions are elastic, momentum is conserved, and the 

time of the collision is short. 
• The gas is in EQUILIBRIUM.  As such, the statistical quantities of pressure 

and temperature are well defined in the volume region of concern. 
 
Reviewing the above properties, it would seem that this list is restrictive to 

the extent that it would be impossible to find a gas satisfying these criteria.  “No 
net force…” implies that we may not use the ideal gas law in a gravitational field!  
As it turns out, scientists and engineers violate many of the above properties on a 
regular basis and the ideal gas law is still an excellent model of the behavior of the 
gas. This excellent modeling is due to the fact that the number of molecules 
involved in the process is so very large, that if thousands of molecules misbehave, 
they will represent only a tiny fraction of the total number of molecules.  However, 
as the density of the gas becomes larger, the property demanding the volume of 
the particle be zero creates a significant misbehavior since the true volume of the 
gas molecules is significant when compared to the volume of the container.  

On occasion, it is useful to introduce the gas law using the quantities 
density and molecular weight (mass).  This is easily done with a few substitutions 
as follows: 
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RT
mw

P

RT
V
nP

nRTPV

ρ
=

=

=

                                            

 
This can be verified by unit analysis of the ratio n/V.  In SI units,  
 

moles/m3 =  kg/m3 * moles/kg  = density /mw 
 
The ideal gas law will enable us to derive many different relationships for various 
processes.    
 
 

 
 
8. Speed Distribution of an Ideal Gas.  Although it is not necessary to 

know how the speeds within molecules vary in order to do thermodynamic 
calculations, it will help understand the statistical nature of many thermodynamic 
state variables such as temperature, pressure, and entropy.  James Maxwell, in 
1852, derived the probability distribution function for the speeds of gas molecules.  
This function has become known as Maxwell's speed distribution law.  It is: 

 








 −






=

RT
Mvv

RT
MNvn

2
exp

2
4/)(

2
2

2
3

π
π  

 
where:  
 

M is the molecular mass (kg/mole), 
R is the gas constant (8.314 j/mole K), 
T is the Kelvin temperature,  
v is the molecular speed (m/s), 
n(v)/N, is the fraction of molecules per unit speed interval (having the units 
of 1/∆v), in the interval between v and v+dv.    
 
The product, n(v)/N * dv, is the fraction of molecules having speeds in the 

interval between v and v+dv.  
 
This equation is plotted for Argon gas at various temperatures below. 
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Speed Distribution for Argon Gas
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Figure 5.  Velocity distribution curves for argon at various temperatures. 

 
One can see from the above figure how the peak of the speed distribution 

curve shifts toward larger velocity values as the temperature increases.  Also 
notice how the spread of the speed distribution curve increases as the 
temperature increases.  Finally, notice that even at low temperatures, a few gas 
particles are moving very fast. 
 

9. Internal Energy of a Gas, a Micro View.  Consider a mono-atomic gas 
confined in a cubical box.  We wish to find an expression for the force exerted by 
the box wall on a particle.  Starting in the horizontal dimension, looking only at 
the “x” component velocity of the particle we apply impulse momentum to the 
elastic collision of a particle with the right face of the box. 

 
 

 y 
 

vx 

 

 
 
 
 
 
 
 
 

Figure 6.  Schematic r

Since the collision is elastic, t
change, only the direction of t

aF
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)( xave mvtF ∆=∆  
he magnitude of the veloci
he velocity. 

xxxve mvmvmvt 2)()( −=−−=∆

11
x

e moving in a box. 

ty of the particle does not 

 



The force desired in the above equation is a steady state force; the average 
must be computed over a sufficiently long time, the time required to repeat the 
collision.  In that amount of time, a particle of zero volume, moving at a speed vx, 
will travel twice the length of the box. 

xv
Lt 2

=∆  

Substituting, we have 

x
x

ave mv
v
LF 22

−=  

 

L
vmF x

ave

2

−=  

This is the average force on a particle. 
 
  We now assert that the average force on the box wall is equal the sum of all 
the collision forces over that period, and in the opposite direction.  For N particles, 
the force on the box wall becomes, 

∑
=

=
N

i
ixave v

L
mF

1

2 )(  

If N is quite large, a number of “on the average” assumptions can be made.  Since 
there are no external forces on the particles (other than the box wall), it is “on the 
average” true that vx, vy, and vz , are all about the same in value.  The velocity of a 
particle can now be found from its component velocities.  We deduce the actual 
velocity of a particle as, 

22222 3 xzyx vvvvv =++=  
Substituting for vx, we have 

∑
=

=
N

i
iave v

L
mF

1

2

3
 

We now recall that the pressure on the box wall is this average force, divided by 
the box wall area L2.  Therefore, Fave=P L2.  We substitute and solve for pressure. 

∑
=

=
N

i
iave v

L
mP

1

2
33

 

We rearrange noting that L3 is the volume of the box V. 

∑
=

=
N

i
iv

mVP
1

2

3
 

From the Ideal gas law, PV=nRT, we replace PV. 

∑
=

=
N

i
iv

mnRT
1

2

3
 

We now divide both sides by 2, and multiply by 3 to yield,  
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∑
=

=
N

i
iv

mnRT
1

2

22
3  

  
Notice that the expression on the right side of the above equation is the 

TOTAL Kinetic Energy of the group of particles.  Since a mono atomic gas can only 
have translational kinetic energy (zero moment of inertia), this also must represent 
the Internal Energy of that gas!  For a mono atomic gas, 

TnRU ∆=∆
2
3  

  
 This fact gives us one of the most powerful substitutions available. 
   

The change in internal energy is only a function of change in temperature. 
 
We may substitute for the change in internal energy of a specific process, the 
change in internal energy for any other process that would undergo the same 
change in temperature.   We have developed this result for a mono atomic gas 
however the statement is true for any gas.  
  
 In general, for any Ideal gas, the change in internal energy can be 
represented with the below relationship,  

TnRU ∆=∆
2
#  

where the symbol # represents the number of degrees of freedom for the gas; the 
number of ways the gas can store energy.  
 
 
 
 
  

Figure 7.  Schematic representation of a monoatomic particle 
 showing 3 KE degrees of freedom. 

 
For a mono atomic gas (a point mass), there are 3 directions that can 

contain kinetic energy.  #=3.  
 
 
 
 
 

Figure 8.  Schematic representation of a diatomic particle 
showing 3 KE and 2 RE degrees of freedom. 

 
For a diatomic gas (linear molecule), in addition to the three kinetic energy 

directions, the molecule exhibits a non-zero moment of inertia about two of these 
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directions and can therefore carry rotational energy about each axis as well.  # = 3 
translation + 2 rotation = 5.  

 A polyatomic gas (non-linear molecule) would have # = 3 translation + 3 
rotation = 6.  

 These numbers: 3, 5, and 6 do not consider vibrational energy storage.   
  

 
 10. Specific Heat Capacities of a Gas.  Early in the study of heat and 
temperature, experimenters found that the heat added to a material was 
proportional to that objects change in temperature.  The relationship, 

TcnQ ∆=   
was found to relate the heat and the change in temperature.  The variable n 
represents the amount of material (grams, pounds, moles, etc) and c is the 
materials specific heat capacity (or specific heat).  It was thought at that time, the 
specific heat was a material constant.  Through the years however, it was 
discovered that the specific heat was not at all constant, but a function of both 
temperature and process!   

Perhaps it would have been wise at this point to abandon the above 
equation in search of an equation of more general worth.  Surely, many scientists 
and engineers explored just that thought, and did in fact arrive at an alternative 
way to represent heat, yet much specific heat data had, and is still collected for 
materials.  The concept and associated equation seems to provide science with 
useful relationships; and as such, remains entrenched in the toolbox of 
thermodynamics.  
  
 Let us now pose a thought experiment; consider two containers, which 
contain equal amounts of the same kind of gas at the same temperature.  What is 
different about the two containers is that one container must remain at a constant 
volume while the other must remain at a constant pressure.  We now add the 
same amount of heat to both containers and ask the question, “Will the 
temperature within each container change by the same amount?” 
 
 One answer, considering the equation Q Tcn ∆=  , would suggest that both 
containers should increase temperature by the same amount. 
 

Experimental evidence however shows that the constant volume container 
will have the larger increase in temperature.  This fact can be explained using the 
first law of thermodynamics, WQU −=∆ . 

 
The constant volume container is rigid. The change in volume is zero and thus so 
is the work.  All heat entering the container goes to an increase in Internal Energy 
and thus an increase in temperature.  In the constant pressure container, the gas 
expands and work is done.  The resulting change in Internal Energy is less than in 
the constant volume container and thus the change in temperature is also less. 
 

G. Kapp, 5/28/04 14



 So why did Q = n c ∆T fail?  The reason is that the value of the specific heat 
is different for each process!  We now “patch” the failed relationship by defining 
two specific heat capacities for a single gas: 
 

cp, the specific heat for the constant pressure process. 
cv, the specific heat for the constant volume process. 

 
Values for both these variables are tabled in many sources, including how they 
vary with temperature. 
 
 We now set out to explore the relationship between cp and cv.   Consider two 
containers, which contain equal amounts of the same kind of gas at the same 
temperature.  What is different about the two containers is that one container 
must remain at a constant volume while the other must remain at a constant 
pressure.   In this experiment, we put differing amounts of heat into each 
container in an attempt to achieve the same change in temperature.    
 

For the constant volume process, the work is zero and the first law becomes,  
TncQU v∆==∆  

For the constant pressure process, the work is W=P∆V and the first law becomes, 
VPTncWQU P ∆−∆=−=∆  

Since the change in temperature for both processes is the same, we equate the 
change in Internal Energy to obtain, 

VPTncTnc pv ∆−∆=∆  
For the constant pressure process, the ideal gas law evaluated between two states 
is, 

TnRVP ∆=∆  
 
Substituting for P∆V, we arrive at 

TnRTncTnc pv ∆−∆=∆  
After cancellation, we arrive at the desired relationship, 
 

vp ccR −=  
 
This relationship (for a gas) is in excellent agreement with experimental results. 
 
 
 
 
 

11. Reversible Gas Processes.  There are four processes that are frequently 
used to model more complicated processes in engineering and science.  They 
are: 

• Isometric process.  A constant volume process. 
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• Isobaric process.  A constant pressure process. 
• Isothermal process.  A constant temperature process. 
• Adiabatic process.  A process with zero heat flow. 

 
Here, we will examine how these processes look on a pressure vs. volume 
graph, how the first law relates to these processes, and the details of 
expressing the heat and work for these processes when the material is an ideal 
gas.  We are considering here only equilibrium processes for which the values 
of pressure and temperature are well defined. 
 

11.1 Isometric Process.  The Isometric process is viewed as a vertical line 
on the P vs. V graph.  Since dV=0, the work done for this process is also zero as 
evidenced by the lack of area under the trajectory as viewed. 
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Figure 9.  Gas undergoing an isometric process. 

 
The first law is therefore,  ∆U = Q .  All heat for the process changes the 
internal energy of the gas, and a corresponding change in temperature is 
expected.  For a gas, the heat may be expressed using Q = n cv ∆T , and the 
first law is therefore, 

∆U = n cv ∆T 
  

We are also in a position to predict cv for an Ideal gas.  Equating TnRU ∆=∆
2
#  

to the above relationship, R
2
#cv =  

 
 

11.2 Isobaric Process. The Isobaric process is viewed as a horizontal line 
on the P vs. V graph.  As can be seen, the temperature will change in an isobaric 
process and we would expect an associated change in the internal energy for a 
gas.      
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Figure 10.  Gas undergoing an isobaric process. 
 
 

 The work done for this process is W = P ∆V, which is easily seen as the 
rectangular area under the P vs. V graph.  

 
The first law is therefore, 

∆U = Q – W 
∆U = Q - P∆V 

 
Heat is also associated with this process.  The heat can be expressed using  

Q = n cp ∆T , and on substitution to the first law, we have 
 

∆U = n cp ∆T - P∆V 
  

 For an isobaric process, one can also incorporate the ideal gas law at the 
initial and final states of the gas: 

PfVf = nRTf 
PiVi = nRTi 

 
 Subtracting the initial from the final, and noting Pf = Pi, we arrive at 

P∆V = nR∆T 
This relationship may also be substituted for the isobaric work term to give 

∆U = n cp ∆T - nR∆T 
or 

∆U = n (cp – R) ∆T 
 

11.3 Isothermal Process.  The Isothermal process is a process of constant 
temperature and as such will follow an isotherm on the P vs. V graph.  Since there 
is no change in temperature, there is also no change in internal energy for this 
process. 
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Figure 11.  Gas undergoing an isothermal process. 

 
   The first law is therefore,  ∆U = Q – W , where ∆U=0 , so Q = W ! 

 It should be noted that, for an isothermal expansion, the first law would 
indicate that all the heat entering the system could be converted to useful work.  
This would make this process 100% efficient!  An isothermal process would not 
violate the first law of thermodynamics, but it does violate the second law!   This 
raises the question, “why do we consider the process”?  In principle, the 
isothermal process could be executed if it were to be done infinitely slow.  Thus, 
slow processes, which have only small deviations from constant temperature, may 
be modeled with this process. 

 
 The work done for this process, for a gas, is obtained using the ideal gas 

law as follows: 

∫= PdVW  

V
nRTP =  

On substitution into the integral, 
 









== ∫

i

f

V
V ln 1 nRTdV

V
nRTW  

There is no cT. The relationship Q = n c ∆T does NOT apply to a constant 
temperature processes. 
 

11.4 Adiabatic Process.  An adiabatic process is a process in which no 
heat crosses the system boundary.  This process could occur if a system were well 
insulated, or as a result of a rapid process where there was insufficient time for 
the heat to cross the system boundary.  We wish to determine how the gas state 
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variables, pressure, temperature, and volume are related for a process of this 
kind.  We will derive this trajectory for the case where the number of moles of gas 
is a constant.   
 Since the material is a gas, any process involving a gas must obey the ideal 
gas law.  We start with the ideal gas law, and differentiate both sides assuming a 
constant number of moles. 

nRdTVdPPdV
nRTPV

=+
=

 

The result is a differential equation describing the ideal gas law.   
 

Our tactic is to use the first law to create the adiabatic constraint, then to 
insert that constraint into the above differential equation, and finally, solve the 
modified differential equation for the adiabatic process trajectory.   
 

The first law, with zero heat is, 

dwdU
dwdqdU

−=
−=  

Since dw = PdV, we substitute 
PdVdU −=  

We now need a replacement for dU.  This will be done by considering 
another process that has the same change in temperature; a constant volume 
process. 
For the constant volume process, the first law is, 

dTncdqdU v==  
Equating dU’s we have, 

PdVdTncv −=  
Now we insert the above constraint into the differential equation by 

substituting for dT. 

vnc
PdVnRVdPPdV )(−

=+  

We rearrange the above to get 

01 =+







+ VdPPdV
c
R

v

 

Before we solve this equation, let us examine the quantity in brackets above.  This 
can be simplified as follows: 
 

γ≡=






 +
=








+=








+

v

p

v

v

vv

v

v c
c

c
Rc

c
R

c
c

c
R1  

 
Here, we define γ as the ratio of the specific heat at constant pressure, to the 
specific heat at constant volume.  Our differential equation is: 

0=+VdPPdVγ  
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We divide both sides by PV, 

0=+
P
dP

V
dVγ  

Integrating both sides, 

0∫∫∫ =+
P
dP

V
dVγ  

This gives, 
.lnln constPV =+γ  

 Absorbing γ into ( ln V ) as an exponent, and exponentiation of both sides we 
arrive at the adiabatic trajectory. 

.lnln constPV =+γ  
.}exp{}lnlnexp{ constPV =+γ  
.) ln exp( )ln exp( constPV =γ  

 
constant=γPV  
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Figure 12.  Gas undergoing an adiabatic process. 

 
 The adiabatic process produces work at the expense of internal energy as 
evidenced by the area under the curve and the corresponding change in 
temperature.   
 

We now calculate the work done in an adiabatic expansion.  We start with 
the general expression for expansion work, 

∫=
f

i
PdVW  

Since pressure is a function of volume for this process, we arrange a suitable 
substitution using the adiabatic trajectory, where the constant is evaluated at the 
initial point, 
 
 

γγ
iiVPPV =  
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γγ −= VVPP ii  
This is now substituted in the work integral to give, 

dVVVPW
f

i
ii ∫ −= γγ  

The above integral is now evaluated, 
f

i
ii
VVPW 








−

=
−

γ

γ
γ

1

1

 

[ ]γγ
γ

γ
−− −

−
= 11

1 if
ii VVVPW  

Since PiVi
γ = PfVf

γ , we distribute this within the brackets to give, 

[ ]γγγγ

γ
−− −

−
= 11

1
1

iiifff VVPVVPW  

Cleaning up the exponents, 

[ ]iiff VPVPW −
−

=
γ1

1  

We arrive at our result, 
 

γ−
∆

=
1

)(PVW  

 
the expansion work done in an adiabatic process. 
 
 
 

12. Peculiar Results; Entropy.  Through out history, scientists have done 
experiments, which, when the data was examined, interesting trends emerged.  
Working with the collisions of balls, it was noticed that peculiar relationships 
existed between the velocities of the balls before, and after those collisions.  For 
example, if a single ball was rolled into a string of other balls of the same mass at 
rest, that ball stopped and one ball from the other end of the string emerged with 
the same velocity!  Today, we all but take that result for granted as we profess the 
reason: conservation of momentum and energy.  Momentum – Impulse being 
developed by Newton around 1687 A.D.  However, prior to Newton, the fact that it 
took place in the way that it did was, peculiar.  Much the same peculiar fact was 
often noticed involving the square of the velocities, a peculiar conservation fact 
that today, we explain with conservation of kinetic energy.  Peculiar results, path 
independent results, conservation results, they draw our focus.  
 So when Sadi Carnot (1792-1832), while studying the efficiency of his now 
famous hypothetical heat engine cycle, saw that the ratio of Q/T , summed over 
all legs of the Carnot Cycle, summed to zero, this too must have been noticed as, 
peculiar. 
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 Recalling statements made earlier, the equation in use for the relationship 
between heat and temperature,  Q = n c ∆T , clearly had some problems.  Its 
foundation lie in empirical experiment, still, it presented no particular insight 
toward a physical law of nature.  The specific heat constant was not much more 
than a fudge factor chosen for the particular material and process.  For the 
quantity Work, at least it was well founded with the variables of force and 
displacement.  
 

Eventually, the question would arise, “is there an equation, similar to work, 
that can be used to describe heat?”  This equation would require a heat “force 
variable” and a heat “coordinate variable”.  Now the heat “force variable”, the 
CAUSE variable, would seem obvious – “…as a result of temperature difference 
only” – the force variable must be temperature, T.  But what is the coordinate 
variable?  It would have to be invented!  The letter “S” is used in modern 
thermodynamics as the heat “coordinate variable” – and its name, Entropy. 

This invention would now provide a way of computing heat with the same 
sort of integral as work. 
 

∫ •= xdFW vr
Definition of work 

∫= dVPW       Expansion work  

∫= dSTQ                         Heat 

We may plot T as a function of S, and extract the area under the curve as heat. 
 

T Heat, Q 

S  
 

Figure 13.  Temperature as a function of entropy.  Area bounded represents heat. 

 
This invention Entropy (S) was formalized by Rudolph Clausius (1822-1888) as 
the peculiar coordinate variable for heat.  Let us rearrange this relationship, 
 

∫= dSTQ   

 
dSTdq  =  
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T
dqdS =  

 
In this form, we notice the same peculiar ratio that Carnot also noticed.  
  
 Now this “Entropy” is a coordinate variable you say, but what kind of 
coordinate is it?  What IS Entropy?  The answer could be “ It doesn’t really mater”.  
We can do experiments, compute the Entropy, put the values in a table, and when 
we need it, we can look it up.  True as this statement is, the concept of entropy 
doesn’t seem to be much of an improvement over specific heat; but this Entropy 
is, peculiar.  Since it is a coordinate, we can represent it on a number line.  Its’ 
value is, what it is.  Like pressure, volume, and temperature (also coordinates), 
Entropy seems to be a state variable.   
 
 There is yet another peculiar idea to discuss.  If an unyielding and thermally 
insulated sheet of armor plate suddenly stops a speeding bullet, all the kinetic 
energy of the bullets center of mass is converted into Internal Energy and 
manifests itself in a rise of temperature.  Why then do we never observe a stopped 
bullet, when heated to a high temperature, spontaneously reduce its temperature 
and speed off with a large center of mass kinetic energy?  The first law of 
thermodynamics does not prohibit an event of this kind.  There seems to be a 
direction for spontaneous change, and that direction is not reversible.  Irreversible 
and spontaneous changes are seen throughout nature.   
 So, when Sadi Carnot and Rudolph Clausius, while studying a hypothetical 
REVERSABLE (never to far from equilibrium) heat engine cycle found that for the 
cycle,  

∫∫ ≡∆== 01 SdSdq
T

 

, and for an IRREVERSIBLE cycle, the same computation resulted in 
 

0fS∆  
 
, this result must have surpassed – peculiar.  That was discovery.  Here is a state 
variable, which will point the direction of spontaneous change; it will provide a 
mathematical foundation for no spontaneous change – equilibrium!  That is 
discovery.   
 

We will now author a definition of reversibility and equilibrium.  The 
condition of reversibility between a system and its surroundings exists when the 
intensity factors of system (pressure, temperature, electric potential, etc.), differ by 
no more than an infinitesimal amount from the surroundings.  Equilibrium is 
when they are equal.  The difference is indistinguishable. 
 

13. The Second Law of Thermodynamics and Efficiency.  We now define 
Entropy with, and introduce the Second Law of Thermodynamics as: 
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dSTdqrev  =  

where we use any hypothetically reversible path between states.  All entropy 
computations MUST use Kelvin temperature. 
 

In words, the Second Law of Thermodynamics can be stated “For any 
process that proceeds from one equilibrium state to another, the sum of the change 
in entropy for the system and the change in entropy for its surroundings must be 
positive or zero.  No natural process ever produces a zero result”.  It is possible, for 
a given system, to undergo a process that will increase entropy, decrease entropy, 
or for the entropy to remain constant.  We must remember however that the 
piston producing this process has two sides.  For the other side of the piston, the 
universe side, we also produce a process and that process is never reversible.  The 
Entropy of the universe will always increase. 

 
Perhaps a more practical statement of the second law of thermodynamics 

incorporates the concept of efficiency.  The efficiency of any process is the ratio of 
“what you want out of the process” to “the cost of getting what you want”.  For a 
cyclic heat engine, we want work and its cost is fuel (heat).  We define the 
efficiency of the engine as, 

 
 

engine intoHeat 
cycle for theWork   Eff =  

 
Real heat engines not only consume  fuel, the byproducts of the fuel are ejected as 
exhaust.  This exhaust is negative heat … it represents a loss of efficiency.  We 
now formulate an alternative statement of the Second Law of Thermodynamics: 
 
 No cyclic heat engine will convert heat into work at an efficiency of 100%. 
      

But “What is Entropy?”  Well, what is force?  What is energy?  The beauty in 
all this is that we do not need to know! We may still use these concepts to 
formulate relationships, which lead to the solution of engineering problems.  
These concepts are not dependent on the specifics of any material or object.  Still, 
we find it satisfying to interpret force and energy.  In the case of Internal energy, 
we interpret it as the total micro energy of a group of particles.   

 
 
 
14. We Interpret Entropy.  Entropy is the measure of disorder.  For a gas 

seen as a collection of particles, this Entropy (disorder) manifests itself in two 
forms:  disorder of position (configuration entropy), and disorder of energy (or 
velocity).   
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Consider a library.  If all the books are on the shelf in their correct position, 
such that when we locate a particular book in the card catalog, we go to the 
correct stack, and to the correct shelf, and to the correct position on that shelf, 
and blindly grab, and the probability of selecting the desired book is 100%, this 
for any desired book, we would say that the library is in perfect order.  If however, 
we must select an entire shelf of books to insure the desired book is also selected, 
the library is in disorder.  In this case, the disorder can be measured by the ratio 
of the volume selected, to the volume of the library.   

We could use much the same argument in selecting a particle with a given 
speed.  If all the particles have the same speed, it is easy to select a particle with 
that speed on a blind grab.  As the speeds of the particles become increasingly 
more random, the probability of selecting a particle in a certain speed range 
becomes more difficult.  The disorder of velocity (energy) has increased.  Thus, 
entropy can be interpreted as related to the spread of the position and velocity 
distributions of the gas molecules. 

For solids, liquids, and mixtures, additional forms of Entropy are possible.  
Is the crystal perfect or does it have defects?  Is it two separate piles of material, 
salt and sugar, or a mixture of both?  We may interpret Entropy in a number of 
ways; however, the real beauty is that we do not need to interpret entropy to use 
entropy.  That is discovery. 
 
 Computing Changes in Entropy.  To compute the change in entropy for a 
particular process, whether reversible of irreversible, it is only necessary to devise 
a reversible path between the initial and final equilibrium states and compute the 
change in entropy for that path.  Starting with 
 

T
dqdS rev=  

 
, we require a suitable replacement for dqrev.  One suitable replacement may be 
obtained from differentiation of the original heat equation, Q = n c ∆T.  In doing 
so, we may take advantage of years of tabulation of specific heat data.  Another 
useful replacement for dqrev is often obtained from the first law.  Some examples 
follow. 
 
 The change of entropy for a reversible constant pressure process.  We 
assume both the specific heat as constant, and the number of moles as constant. 

dTncdq
TncQ

p

p

=

∆=
 

 

T
dTnc

dS p=  
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∫ ∫=
f

i

T

T
p T
dTncdS  









=∆

i

f
p T

T
ncS ln  

Again, temperatures must be in Kelvin. 
The change of entropy for a reversible constant volume process.  We assume 

both the specific heat as constant, and the number of moles as constant.  

dTncdq
TncQ

v

v

=
∆=

 

T
dTncdS v=  

∫ ∫=
f

i

T

T
v T
dTncdS  









=∆

i

f
v T

T
ncS ln  

 
 The change of entropy for a reversible constant temperature process for a 
gas.  We assume both the specific heat as constant, and the number of moles as 
constant.  Here we start with the first law, 

dwdqdU −=  
For this process, the change in internal energy is zero.  The first law becomes, 

PdVdwdq ==  
Substitution gives, 

T
PdVdS =  

From the ideal gas law,  

V
nR

T
P 1

=  

Substitution gives, 

dV
V

nRdS 1
=  

Integration of both sides, 

dV
V

nRdS
f

i

V

V
∫ ∫=

1  









=∆

i

f

V
V

nRS ln  

 
The change in entropy for a reversible adiabatic process.  We start with the 

Second Law, 
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dq = T ds 
Since, for the adiabatic process, dq=0, and T is not zero, ds must equal zero.  
Thus, for the adiabatic process, 

∆S = 0 
This process is often called an isentropic process. 
 
 Change in Entropy of a Pure Ideal Gas, Any Process.  For a pure substance 
(no mixing), its change in Entropy is a function of both temperature and volume 
(pressure).  We now set out to compute a general relationship for the change in 
entropy which connects any two equilibrium states of an ideal gas, as a function 
of the temperatures and pressures of those initial and final states. 
 
 Our strategy is based on the fact that the change in entropy, a state 
variable, is path independent as long as we choose some reversible path.  We 
choose a reversible constant temperature path, followed by a reversible constant 
pressure path, to connect the initial and final states of the ideal gas as shown in 
the diagram below.  The change in entropy for this “combination” process is just 
the sum of the changes in entropies of its parts; each previously derived. 
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nRSSS lnln     (considering CP as constant) 

For the constant temperature portion of the process, 
f

i

i

f

P
P

V
V

= .  Substitution into 

the above gives: 






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Change in Entropy for an Equilibrium Phase Transformation.  Equilibrium phase 
transformations occur at constant temperature.  Starting from dq=T dS, 

dq
T

dS 1
=  

∫ ==∆
phase

phase

phase
phase T

Q
dq

T
S 1  

Thermodynamic tables tabulate the latent heat of phase transformations per 
amount of material, L (in units of energy/mole), thus for a given number of moles 
of material, Qphase=n Lphase..  Thus, for example, a phase transformation from liquid 
to vapor, 

vap

vap
vap T

nL
S =∆  

 
 

15. Other Functions of State, Point Functions.  The first law, with all of 
its’ power, is but a law of accounting.  It does not dictate feasibility.  It is the 
second law that contains a statement of feasibility.  These two laws may be 
combined via substitution to yield a statement of both accountability, and 
feasibility; the combined first and second law of thermodynamics. 

   

∫ ∫−=−≡∆ PdVTdSWQU  

The first and second law combined can be used as is, or can be further rearranged 
using the calculus procedure “integration by parts”, to yield three additional state 
functions.   
 A brief review of “integration by parts” may be helpful.  Here, we will apply 

the procedure to the definite integral: .  Figure 14a below shows two 

rectangles, one of area P

∫
f

i

V

V

PdV

fVf, and one of area PiVi.  Subtracting the two areas gives 
us the area of an “L” shaped region.  Notice that this area is independent of how 
we may chose to connect the points PfVf and PiVi. 
 

P P  
 

Pf Pf  
 
 
 Pi Pi  
 
 V V 
 Vi Vf Vi Vf  

Figure 14a showing the difference of two rectangular areas.            Figure 14b showing further subdivision into parts. 
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Once a path is chosen, as in figure 14b, the path further subdivides the “L” 
shaped area into two regions.  The region under the curve described in general by 

, and the region to the left of the curve described by .  Integration by 

parts is thus seen as an accounting of the areas involved: 

∫
f

i

V

V

PdV ∫
f

i

P

P

VdP

Difference in rectangular area = area under + area to left of curve. 
( ) ∫ ∫+≡∆ VdPPdVPV  

 
Of important interest is the fact that ( )PV∆  is a “point function”; a function 

of state.  It does not depend on how we get from the initial to the final point. 
We now proceed to develop the remaining three state functions. 

 
15.1 Enthalpy.  We start with the first and second law combined, 

∫ ∫−=∆ PdVTdSU  

 
 
We apply integral by parts to the second integral. 
 

∫ ∫−∆−=∆ )( VdPPVTdSU  

Since ∆(PV) is independent of path, we move it to the left side of the equation and 
redefine the results as the change in Enthalpy. 

∫ ∫+=∆+∆≡∆ VdPTdSPVUH )(  

 
 

15.2 Helmholtz Energy.  We start with the first and second law combined, 

∫ ∫−=∆ PdVTdSU  

We apply integral by parts to the first integral. 
 

( ) ∫∫ −−∆=∆ PdVSdTTSU )(  

Since ∆(TS) is independent of path, we move it to the left side of the equation and 
redefine the results as the change in Helmholtz Energy. 

∫ ∫−−=∆−∆≡∆ PdVSdTTSUA )(  

15.3 Gibbs Energy.  We start with the first and second law combined, 

∫ ∫−=∆ PdVTdSU  

We apply integral by parts to both integrals. 
 

[ ] [ ]∫∫ −∆−−∆=∆ VdPPVSdTTSU )()(  
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Since ∆(PV) and ∆(TS) are independent of path, we move them to the left side of the 
equation and redefine the results as the change in Gibbs Energy. 

∫ ∫+−=∆−∆+∆≡∆ VdPSdTTSPVUG )()(  

)(PVAG ∆+∆≡∆  
)(TSHG ∆−∆≡∆  

 
16. Interpretations of Enthalpy, Helmholtz Energy, and Gibbs Energy.  

Once again the statement is made; “I can see the formula, but what is it?”  And 
again, we answer the question by “it”, is something that does not depend on how it 
gets there.  That fact alone makes a state function interesting.  We now however, 
embark on the mission of interpretation.  We seek to connect the concept with the 
familiar.  In the attempt, we must agree that the visualizations to follow are but 
shadows of the concepts themselves; interpretations under restricted conditions.  
These interpretations may however give insight as to the prudent use of these 
state functions. 
 
 

16.1 Enthalpy.  Reviewing the definition,  

∫ ∫+=∆+∆≡∆ VdPTdSPVUH )(  

, one may wonder how this function would look for a constant pressure process.  
We impose the restriction to arrive at 
 

∫=∆+∆=∆ TdSVPUH  

Interpretation of the remaining integral is crystal clear – it is heat.  The change in 
Enthalpy for a constant pressure process is the heat, Q.  The chemist often 
interchanges the phrases “heat of the reaction” and “change in enthalpy of the 
reaction”; these reactions occurring in a constant pressure environment.  
Constant pressure Enthalpy changes may be easily measured from calorimetric 
experiments or calculated from a large wealth of specific heat data.   
 Consider two equilibrium states, which may be connected with a constant 
pressure process. The change in Enthalpy may be computed from, 

dTncQH P∫==∆  

If either n, or cP may be considered constant, the integral is easier to evaluate.  
Once the Enthalpy change has been determined for that process, the value is 
correct for any process that connects those two equilibrium states.   
 In a more general sense, ∆H =  ∆U + ∆(PV) is often used when a process is 
such that only PV work and Internal energy changes are present. 
 

16.2 Helmholtz Energy.  Given the definition, 

∫ ∫−−=∆−∆≡∆ PdVSdTTSUA )(  

one may view it under the conditions of constant temperature.  This view 
produces,   
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workPdVSTUA −=−=∆−∆=∆ ∫  

We may interpret the change in Helmholtz Energy under conditions of constant 
temperature as the negative of the maximum possible work, which can be 
extracted when moving from one equilibrium state to another along that path.  
Since the state of equilibrium between a system and its surroundings is achieved 
when no more work may be extracted, the Helmholtz Energy points the way to the 
criteria for equilibrium, and spontaneity.    
 

∆A < 0, for the process indicates a spontaneous process. 
∆A = 0, the system and surroundings are in equilibrium. 
 
16.3 Gibbs Energy.  Again, we review the definition, 

)(PVAG ∆+∆≡∆ , 
we see that the Gibbs energy is, for a constant temperature process:  -(work) max + 
expansion work = -worknet  for the process.  The Gibbs Energy also points the way 
to spontaneous change and equilibrium for a system and its surroundings. 
 

∆G < 0, for the process indicates a spontaneous process. 
∆G = 0, the system and surroundings are in equilibrium. 

 
When a system is not in equilibrium, it has available energy (or what is often 
called FREE energy) to do work.  In moving toward equilibrium, the system 
releases this energy in the form of work as it lowers its energy state.  In chemical 
systems, open to the atmosphere, this is usually PV work. 
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